Coevolution of A and B genomes in allotetraploid Triticum dicoccoides

Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 1021-1026 ◽  
Author(s):  
Alexander Belyayev ◽  
Olga Raskina ◽  
Abraham Korol ◽  
Eviatar Nevo

Data is presented on the coevolution of A and B genomes in allotetraploid wheat Triticum dicoccoides (2n = 4x = 28, genome AABB) obtained by genomic in situ hybridization (GISH). Probing chromosomes of T. dicoccoides with DNA from the proposed A/B diploid genome ancestors shows evidence of enriching A-genome with repetitive sequences of B-genome type. Thus, ancestral S-genome sequences have spread throughout the AB polyploid genome to a greater extent than have ancestral A-genome sequences. The substitution of part of the A-genome heterochromatin clusters by satellite DNA of the B genome is detected by using the molecular banding technique. The cause may be interlocus concerted evolution and (or) colonization. We propose that the detected high level of intergenomic invasion in old polyploids might reflect general tendencies in speciation and stabilization of the allopolyploid genome.Key words: Triticum, polyploid, evolution, genomic in situ hybridization, repetitive sequences.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 513B-513
Author(s):  
Anfu Hou ◽  
Ellen B. Peffley

Introgression of genes in species crosses can be observed morphologically in backcrossed or selfed progenies, but the phenotype does not give information about the movement of DNAs. Cytogenetic markers allow for visualization of specific DNAs in a genome. Few cytogenetic markers are available in onion to monitor the introgression of DNA in species crosses. Genomic in situ hybridization (GISH) provides a way to locate unique DNA sequences contributed by parents. We are using GISH to monitor the movement of DNAs from A. fistulosum into A. cepa. Results of experiments using A. fistulosum as probe DNA, and A. cepa as blocking DNA will be reported. Also presented are hybridization sites observed in F1BC3 progeny of the GISH.


Genome ◽  
1990 ◽  
Vol 33 (1) ◽  
pp. 30-39 ◽  
Author(s):  
J. Dvořák ◽  
P. Resta ◽  
R. S. Kota

The genome allocation of the Triticum aestivum L. chromosomes denoted 4A and 4B was based on an erroneous inference. Since neither chromosome pairs with the chromosomes of putative ancestors of wheat, molecular tools were employed to clarify the origin of the two chromosomes. Disomic substitutions for T. aestivum chromosomes 4A or 4B by chromosomes 4 from T. speltoides (Tausch) Gren., a putative ancestor of the wheat B genome, T. longissimum (Schweinf. et Muschl.) Bowden (a close relative of T. speltoides), or T. monococcum L. ssp. aegilopoides (Link) Thell., a close relative of the ancestor of the wheat A genome, were produced. The ability of the substituted chromosome to compensate in the disomic substitution lines, the C-banding patterns of the chromosomes, electrophoretic alleles at the Adh-1 and Lpx-1 loci, and in situ hybridization with an interspersed repeated sequence all were consistent in showing that the chromosome previously denoted as 4A belongs to the B genome and the chromosome previously denoted as 4B is a rearranged chromosome of the A genome. Chromosome 4A is consequently reallocated to the B genome and chromosome 4B to the A genome in T. turgidum L. em. Morris et Sears and T. aestivum. To reflect the fact that the chromosome previously denoted as 4B has only a homoeologous relationship to chromosome 4A of T. urartu (the ancestor of the A genome in polyploid wheats), the chromosome is designated 4Aa.Key words: repeated nucleotide sequence, alcohol dehydrogenase, lipoxygenase, in situ hybridization, chromosome evolution.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
M J González ◽  
A Cabrera

Total genomic Hordeum chilense DNA probe was hybridized to somatic chromosome spreads of Triticum aestivum 'Chinese Spring' and to four advanced tritordeum lines, the latter being the fertile amphiploid between H. chilense and durum wheat (2n = 6x = 42, AABBHchHch). The probe hybridized strongly to the B-genome chromosomes and to one or two bands on the A-genome chromosomes present in both wheat and tritordeum alloploids. Bands on chromosomes 1D, 2D, and 7D from hexaploid wheat were also detected. Genomic H. chilense DNA probe identified 16 chromosome pairs of the chromosome complement of hexaploid wheat and all A- and B-genome chromosomes present in the tritordeum amphiploids. The in situ hybridization patterns observed correspond to those previously reported in wheat by both N-banding and in situ hybridization with the GAA-satellite sequence (Pedersen and Langridge 1997), allowing the identification of these chromosomes. Variation among the tritordeum amphiploids for hybridization sites on chromosomes 2A, 4A, 6A, 7A, 4B, 5B, and 7B was observed. Despite of this polymorphism, all lines shared the general banding pattern. When used as probe, total H. chilense genomic DNA labeled the H. chilense chromosomes over their lengths allowing the identification of 14 H. chilense chromosomes present in the tritordeum amphiploids. In addition, chromosome-specific telomeric, interstial, and centromeric hybridization sites were observed. These hybridization sites coincide with N-banded regions in H. chilense allowing the identification of the individual H. chilense chromosomes in one of the amphiploid. The N-banded karyotypes of H. chilense (accessions H1 and H7) are presented.Key words: Hordeum chilense, Triticum aestivum, chromosome identification, in situ hybridization, N-banding.


2018 ◽  
Vol 12 (2) ◽  
pp. 247-265 ◽  
Author(s):  
Muhammad Zafar Iqbal ◽  
Cheng MingJun ◽  
Yanli Zhao ◽  
Xiaodong Wen ◽  
Ping Zhang ◽  
...  

This study was aimed to investigate the stability of chromosomes during meiosis in autopolyploid and allopolyploid maize, as well as to determine an association of chromosomes between maize (Zeamaysssp.mays Linnaeus, 1753) and Z.perennis (Hitchcock, 1922) Reeves & Mangelsdor, 1942, by producing a series of autopolyploid and allopolyploid maize hybrids. The intra-genomic and inter-genomic meiotic pairings in these polyploids were quantified and compared using dual-color genomic in-situ hybridization. The results demonstrated higher level of chromosome stability in allopolyploid maize during meiosis as compared to autopolyploid maize. In addition, the meiotic behavior of Z.perennis was relatively more stable as compared to the allopolyploid maize. Moreover, ten chromosomes of "A” subgenome in maize were homologous to twenty chromosomes of Z.perennis genome with a higher pairing frequency and little evolutionary differentiation. At the same time, little evolutionary differentiation has been shown by chromosomes of "A” subgenome in maize, while chromosomes of "B” subgenome, had a lower pairing frequency and higher evolutionary differentiation. Furthermore, 5IM + 5IIPP + 5IIIMPP and 5IIMM + 5IIPP + 5IVMMPP were observed in allotriploids and allotetraploids respectively, whereas homoeologous chromosomes were found between the "A” and "B” genome of maize and Z.perennis.


Genome ◽  
2012 ◽  
Vol 55 (6) ◽  
pp. 407-415 ◽  
Author(s):  
Galina Pendinen ◽  
David M. Spooner ◽  
Jiming Jiang ◽  
Tatjana Gavrilenko

Wild potato ( Solanum L. sect. Petota Dumort.) species contain diploids (2n = 2x = 24) to hexaploids (2n = 6x = 72). J.G. Hawkes classified all hexaploid Mexican species in series Demissa Bukasov and, according to a classic five-genome hypothesis of M. Matsubayashi in 1991, all members of series Demissa are allopolyploids. We investigated the genome composition of members of Hawkes’s series Demissa with genomic in situ hybridization (GISH), using labeled DNA of their putative progenitors having diploid AA, BB, or PP genome species or with DNA of tetraploid species having AABB or AAAaAa genomes. GISH analyses support S. hougasii Correll as an allopolyploid with one AA component genome and another BB component genome. Our results also indicate that the third genome of S. hougasii is more closely related to P or a P genome-related species. Solanum demissum Lindl., in contrast, has all three chromosome sets related to the basic A genome, similar to the GISH results of polyploid species of series Acaulia Juz. Our results support a more recent taxonomic division of the Mexican hexaploid species into two groups: the allopolyploid Iopetala group containing S. hougasii, and an autopolyploid Acaulia group containing S. demissum with South American species S. acaule Bitter and S. albicans (Ochoa) Ochoa.


Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 993-1000 ◽  
Author(s):  
L Poggio ◽  
V Confalonieri ◽  
C Comas ◽  
G Gonzalez ◽  
C A Naranjo

Since 1987 cytological evidence has arisen in our laboratory, pointing to x = 5 as the original basic chromosome number of maize and its related wild species. This paper deals with the analysis of the meiotic behavior of F1 hybrids Zea luxurians × Z. diploperennis (2n = 20) and Z. luxurians × Z. perennis (2n = 30). In the first hybrid the most frequent configuration was 8ll + 4l and in the latter was 5lll + 5ll + 5l. Applying GISH (genomic in situ hybridization) to mitotic chromosomes of Z. luxurians we found that DAPI (4', 6-diamidino-2-phenylindole) positive bands located in all telomeric regions of this species did not hybridize with either Z. perennis or Z. diploperennis genomic probe. Therefore, Z. luxurians has a repetitive sequence that can be used in fluorescent staining to identify its chromosomes. When GISH was employed on metaphase I of the 2n = 30 hybrid, all the univalents showed distinctive telomeres of Z. luxurians, while the bivalents did not present any signal. These findings show that the formation of bivalent-univalent configurations is not a random event. The bivalents tend to be spatially separated and are very often observed forming an independent group of 5II. Finally, trivalents were composed by one chromosome labeled in its telomeric regions, and two smaller and unlabeled ones. The use of chromosome markers of Z. luxurians demonstrated to be a good step forward in interpreting the nature of meiotic configurations in 2n = 30 Zea spp. hybrids. They can help to clarify the relationship between genomes and provide a useful addition to the taxonomic classification in the genus Zea.Key Words: Zea hybrids, evolution, cytogenetics, repetitive sequences, heterochromatic knobs.


Genome ◽  
2003 ◽  
Vol 46 (6) ◽  
pp. 953-962 ◽  
Author(s):  
Trude Schwarzacher

In situ hybridization is a powerful and unique technique that correlates molecular information of a DNA sequence with its physical location along chromosomes and genomes. It thus provides valuable information about physical map position of sequences and often is the only means to determine abundance and distribution of repetitive sequences making up the majority of most genomes. Repeated DNA sequences, composed of units of a few to a thousand base pairs in size, occur in blocks (tandem or satellite repeats) or are dispersed (including transposable elements) throughout the genome. They are often the most variable components of a genome, often being species and, occasionally, chromosome specific. Their variability arises through amplification, diversification and dispersion, as well as homogenization and loss; there is a remarkable correlation of molecular sequence features with chromosomal organization including the length of repeat units, their higher order structures, chromosomal locations, and dispersion mechanisms. Our understanding of the structure, function, organization, and evolution of genomes and their evolving repetitive components enabled many new cytogenetic applications to both medicine and agriculture, particularly in diagnosis and plant breeding.Key words: repetitive DNA, genome organization, sequence evolution, telomere, centromere.


Sign in / Sign up

Export Citation Format

Share Document