Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain'

Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 870-883 ◽  
Author(s):  
C A McCartney ◽  
D J Somers ◽  
D G Humphreys ◽  
O Lukow ◽  
N Ames ◽  
...  

Relatively little is known about the genetic control of agronomic traits in common wheat (Triticum aestivum L.) compared with traits that follow Mendelian segregation patterns. A doubled-haploid population was generated from the cross RL4452 × 'AC Domain' to study the inheritance of the agronomic traits: plant height, time to maturity, lodging, grain yield, test weight, and 1000-grain weight. This cross includes the genetics of 2 western Canadian wheat marketing classes. Composite interval mapping was conducted with a microsatellite linkage map, incorporating 369 loci, and phenotypic data from multiple Manitoba environments. The plant height quantitative trait loci (QTLs), QHt.crc-4B and QHt.crc-4D, mapped to the expected locations of Rht-B1 and Rht-D1. These QTLs were responsible for most of the variation in plant height and were associated with other agronomic traits. An additional 25 agronomic QTLs were detected in the RL4452 × 'AC Domain' population beyond those associated with QHt.crc-4B and QHt.crc-4D. 'AC Domain' contributed 4 alleles for early maturity, including a major time to maturity QTL on 7D. RL4452 contributed 2 major alleles for increased grain yield at QYld.crc-2B and QYld.crc-4A, which are potential targets for marker-assisted selection. A key test weight QTL was detected on 3B and prominent 1000-grain weight QTLs were identified on 3D and 4A.Key words: height, lodging, mapping, maturity, microsatellite markers, test weight, 1000-grain weight, Triticum aestivum, wheat, yield.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12416
Author(s):  
Bo Hu ◽  
Yuqiu Li ◽  
Hongyan Wu ◽  
Hong Zhai ◽  
Kun Xu ◽  
...  

Flowering time, plant height, branch number, node numbers of main stem and pods per plant are important agronomic traits related to photoperiodic sensitivity, plant type and yield of soybean, which are controlled by multiple genes or quantitative trait loci (QTL). The main purpose of this study is to identify new QTL for five major agronomic traits, especially for flowering time. Three biparental populations were developed by crossing cultivars from northern and central China. Specific loci amplified fragment sequencing (SLAF-seq) was used to construct linkage map and QTL mapping was carried out. A total of 10 QTL for flowering time were identified in three populations, some of which were related to E1 and E2 genes or the other reported QTL listed in Soybase. In the Y159 population (Xudou No.9 × Kenfeng No.16), QTL for flowering time on chromosome 4, qFT4_1 and qFT4_2 were new. Compared with the QTL reported in Soybase, 1 QTL for plant height (PH), 3 QTL for branch number (BR), 5 QTL for node numbers of main stem, and 3 QTL for pods per plant were new QTL. Major E genes were frequently detected in different populations indicating that major the E loci had a great effect on flowering time and adaptation of soybean. Therefore, in order to further clone minor genes or QTL, it may be of great significance to carefully select the genotypes of known loci. These results may lay a foundation for fine mapping and clone of QTL/genes related to plant-type, provided a basis for high yield breeding of soybean.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rubén Rufo ◽  
Andrea López ◽  
Marta S. Lopes ◽  
Joaquim Bellvert ◽  
Jose M. Soriano

Understanding the genetic basis of agronomic traits is essential for wheat breeding programs to develop new cultivars with enhanced grain yield under climate change conditions. The use of high-throughput phenotyping (HTP) technologies for the assessment of agronomic performance through drought-adaptive traits opens new possibilities in plant breeding. HTP together with a genome-wide association study (GWAS) mapping approach can be a useful method to dissect the genetic control of complex traits in wheat to enhance grain yield under drought stress. This study aimed to identify molecular markers associated with agronomic and remotely sensed vegetation index (VI)-related traits under rainfed conditions in bread wheat and to use an in silico candidate gene (CG) approach to search for upregulated CGs under abiotic stress. The plant material consisted of 170 landraces and 184 modern cultivars from the Mediterranean basin. The collection was phenotyped for agronomic and VI traits derived from multispectral images over 3 and 2 years, respectively. The GWAS identified 2,579 marker-trait associations (MTAs). The quantitative trait loci (QTL) overview index statistic detected 11 QTL hotspots involving more than one trait in at least 2 years. A CG analysis detected 12 CGs upregulated under abiotic stress in six QTL hotspots and 46 downregulated CGs in 10 QTL hotspots. The current study highlights the utility of VI to identify chromosome regions that contribute to yield and drought tolerance under rainfed Mediterranean conditions.


2016 ◽  
Vol 67 (1) ◽  
pp. 37 ◽  
Author(s):  
Ridha Boudiar ◽  
Ana M. Casas ◽  
Carlos P. Cantalapiedra ◽  
M. Pilar Gracia ◽  
Ernesto Igartua

Some Spanish barley (Hordeum vulgare L.) landraces perform better than modern cultivars at low-production sites. The objective of this study was to identify favourable quantitative trait loci (QTLs) for interesting agronomic traits contributed by the landrace SBCC073. To achieve this objective, a population of 100 BC1F5 lines was derived from the cross between the elite cultivar Orria, with high productivity, and the Spanish landrace SBCC073, which was the best performer in low-production trials. The population was evaluated in field trials for 3 years (2011, 2013, and 2014) in Zaragoza, Spain. The population was genotyped with a DArTseq genotyping-by-sequencing assay. A genetic linkage map was developed by using markers of four flowering-time genes and 1227 single-nucleotide polymorphisms of good quality. The genetic map resulted in 11 linkage groups, covering a total distance of 871.1 cM. Five QTLs for grain yield were detected on 2H.1, 4H, 5H and 6H.2. Alleles from SBCC073 contributed to increased yield in three of them. A region at the end of chromosome 5H contains favourable alleles for early vigour, higher grain yield and earlier flowering, all derived from SBCC073. Alleles from Orria contributed to increasing grain yield and simultaneously to reducing plant height on the same region of 6H.2, and to increasing 1000-kernel weight on chromosomes 3H and 5H.


Sign in / Sign up

Export Citation Format

Share Document