Nuclear DNA content of benomyl-induced segregants of diploid strains of the phytopathogenic fungus Armillaria mellea

1985 ◽  
Vol 27 (1) ◽  
pp. 47-50 ◽  
Author(s):  
J. B. Anderson ◽  
D. M. Petsche ◽  
A. L. Franklin

The relative nuclear DNA contents of haploid, diploid, and benomyl-induced segregants of diploid strains of the phytopathogenic fungus Armillaria mellea were measured by mithramycin staining and fluorescence photometry. The diploid strains, originally recovered from sexually compatible matings of haploid strains, were heterozygous at mating-type and auxotrophic marker loci. The somatic segregants examined here were derived by treatment of the diploid strains with the fungicide benomyl in previous studies. As expected, the diploid strains had approximately twice as much nuclear DNA as the haploid strains. Most segregants had near-haploid DNA contents and no detectable heterozygosity at the marker loci; these strains were most likely true haploids. Other segregants with near-haploid DNA contents were heterozygous at a marker locus indicating that they were aneuploid. A minority of segregants had near-diploid DNA contents and may have been either aneuploid or diploid.Key words: basidiomycetes, mithramycin, parasexuality.

1983 ◽  
Vol 29 (9) ◽  
pp. 1179-1183 ◽  
Author(s):  
A. L. Franklin ◽  
W. G. Filion ◽  
J. B. Anderson

Armillaria mellea, a phytopathogenic fungus, is the only member of the Agaricales (Basidiomycetes) whose fertile vegetative phase in nature is thought to be diploid, rather than dikaryotic. To examine the vegetative ploidy of A. mellea, we used the DNA-binding antibiotic, mithramycin, for fluorometry of in situ nuclear DNA. The measurements of nuclear DNA content indicated that strains derived from single basidiospores of A. mellea were haploid and that strains derived from matings of isolates of single spores were diploid. These data confirm the results of earlier genetic experiments, which show haploidy and diploidy in unmated and mated strains, respectively. Nuclear DNA measurements in known haploid and diploid strains of Aspergillus nidulans confirmed the validity of our protocol.


2009 ◽  
Vol 57 (6) ◽  
pp. 524 ◽  
Author(s):  
Milene Miranda Praça ◽  
Carlos Roberto Carvalho ◽  
Carolina Ribeiro Diniz Boaventura Novaes

Previous flow cytometry (FCM) analyses delivered nearly equal mean values of nuclear 2C DNA content for Eucalyptus grandis Hill ex Maiden and E. urophylla S. T. Blake (1.33 pg and 1.34 pg, respectively), whereas E. globulus Labill. presented distinct mean values (1.09, 1.13 and 1.40). These differences have been attributed to the different methodological approach, utilised plant cultivar and presence of intrinsic metabolic compounds that affect fluorochrome fluorescence. In the present study, a FCM and image cytometry (ICM) design, following international consensus criteria, were adopted to reassess the nuclear DNA contents of the above-mentioned Eucalyptus species. Statistical analyses revealed either similar or discrepant nuclear DNA contents, depending on the standard species used and whether FCM or ICM was employed. Our results demonstrated that 2C DNA values obtained by FCM and ICM were most uniform when Solanum lycopersicum was used as a standard. Moreover, the values obtained for E. grandis and E. urophylla were close, but differed as much as 24.63% in relation to previous data, and E. globulus proportionally varied up to 25%. New DNA content values are suggested for these eucalypt species.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
B. J. M. Zonneveld

Genome size (C-value) was applied anew to investigate the relationships within the genus Hepatica (Ranunculaceae). More than 50 samples representing all species (except H. falconeri), from wild and cultivated material, were investigated. Species of Hepatica turn out to be diploid (), tetraploid ( ), and a possible pentaploid. The somatic nuclear DNA contents (2C-value), as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14%) loss of nuclear DNA in the natural allopolyploids was found.


1971 ◽  
Vol 13 (3) ◽  
pp. 607-611 ◽  
Author(s):  
Michael D. Bennett ◽  
J. B. Smith

The 4C nuclear DNA content was estimated for 17 wild Hordeum species and five cultivated Hordeum vulgare varieties which were chosen to include examples varying greatly in geographical origin and in morphological and physiological characters. Nuclear DNA was measured on an integrating microdensitometer using prophase nuclei in Feulgen stained root-tip squashes. There were no significant differences in DNA content between any or the 15 diploid genotypes measured, and the seven polyploid genotypes all had nuclear DNA contents which were simple multiples of the diploid genotypes. This result, namely that the DNA content of diploid Hordeum species is invariable, differs from results obtained from diploid species in several other plant genera which differed greatly in nuclear DNA content.


2014 ◽  
Vol 57 (3) ◽  
pp. 303-316 ◽  
Author(s):  
Barbara Damsz ◽  
Piotr Łuchniak

Cytophotometric studies of nuclear DNA content after Feulgen procedure indicate that in mesophyll of all the seven studied species the highest nuclear DNA endoreplication level occurs in II or III leaf and it varies for particular species. No differences were found in nuclear DNA endoreplication dynamics between the basal and apical parts of the leaf blade. Chloroplast number per cell generally decreases in the successive leaves, and the plastid index is the smallest in the first (oldest) leaves, being similar in both zones. In four species chloroplast number and plastid index show relatively low negative correlation with nuclear DNA contents (expressed as endoreplication index), in two species this correlation is positive, and one species displays very low r value.


2001 ◽  
Vol 126 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Sandy Lin ◽  
Hsiao-Ching Lee ◽  
Wen-Huei Chen ◽  
Chi-Chang Chen ◽  
Yen-Yu Kao ◽  
...  

Nuclear DNA contents were estimated by flow cytometry in 18 Phalaenopsis Blume species and Doritis pulcherrima Lindl. DNA amounts differed 6.07-fold, from 2.74 pg/diploid nuclear DNA content (2C) in P. sanderiana Rchb.f. to 16.61 pg/2C in P. parishii Rchb.f. Nuclear DNA contents of P. aphrodite Rchb.f. clones, W01-38 (2n = 2x = 38), W01-41 (2n = 3x = 57), and W01-22 (2n = 4x = 76), displayed a linear relationship with their chromosome numbers, indicating the accuracy of flow cytometry. Our results also suggest that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes. The comparative analyses of DNA contents may provide information to molecular geneticists and systematists for genome analysis in Phalaenopsis. Endoreduplication was found in various tissues of P. equestris at different levels. The highest degree of endoreduplication in P. equestris was detected in leaves.


A survey of work on meiotic duration in diploid plants shows that the duration is positively correlated with the DNA content per nucleus and with the mitotic cycle time. However, meiotic duration is not solely determined by the DNA content per nucleus but is also affected by chromosomal organization, DNA structure and the developmental pattern of the organism. Thus, in three polyploid plant species meiosis is much shorter and in three animal species it is much longer than would be expected in diploid plant species having corresponding DNA contents. Differences in meiotic duration in plant species are usually the result of proportional differences in all the stages of meiosis. Factors affecting the initiation, control and duration of meiosis are discussed. The consequences of changes in nuclear DNA content on developmental processes and the life cycle in plants are considered. It is suggested that DNA influences development in two ways, first directly through its informational content, and second indirectly by the physical mechanical effects of its mass independent of its informational content.


Mycologia ◽  
1986 ◽  
Vol 78 (6) ◽  
pp. 963-965 ◽  
Author(s):  
Jerome J. Motta ◽  
Diane Cope Peabody ◽  
Robert B. Peabody

AoB Plants ◽  
2011 ◽  
Vol 2011 ◽  
Author(s):  
Naomi Phillips ◽  
Donald F. Kapraun ◽  
Amelia Gómez Garreta ◽  
M. Antonia Ribera Siguan ◽  
Jorde L. Rull ◽  
...  

Abstract Background and aims Brown algae are critical components of marine ecosystems around the world. However, the genome of only one species of the class has so far been sequenced. This contrasts with numerous sequences available for model organisms such as higher plants, flies or worms. The present communication expands our coverage of DNA content information to 98 species of brown algae with a view to facilitating further genomic investigations of the class. Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and the red blood cell (chicken erythrocyte) standard were used to estimate 2C values by static microspectrophotometry. Principal results 2C DNA contents are reported for 98 species of brown algae, almost doubling the number of estimates available for the class. The present results also expand the reported DNA content range to 0.2–3.6 pg, with several species of Fucales and Laminariales containing apparent polyploid genomes with 2C = 1.8–3.6 pg. Conclusions The data provide DNA content values for 12 of the 19 recognized orders of brown algae spanning the breadth of the class. Despite earlier contentions concerning DNA content and the presence of oogamy, the present results do not support a correlation between phylogenetic placement and genome size. The closest sister groups to the brown algae have genome sizes on the order of 0.3 pg (e.g. Schizocladiophyceae), suggesting that this may be the ancestral genome size. However, DNA content ranges widely across the class.


Sign in / Sign up

Export Citation Format

Share Document