Chromosome banding in aphids: G, C, AluI, and HaeIII banding patterns in Megoura viciae (Homoptera, Aphididae)

Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 661-665 ◽  
Author(s):  
G. C. Manicardi ◽  
D. C. Gautam ◽  
D. Bizzaro ◽  
E. Guicciardi ◽  
A. M. Bonvicini Pagliai ◽  
...  

The holocentric mitotic chromosomes of Megoura viciae, a species that has been little studied cytogenetically to date, have been characterized by applying G, C, AluI, and HaeIII banding techniques. C bands have shown the best defined patterns, particularly on the X chromosome. This chromosome, on the other hand, behaved as the most reactive to the various treatments. Uncondensed, prometaphase X chromosomes showed a number of heterochromatic bands, interspersed among the euchromatin, which fused together during metaphase condensation. AluI and HaeIII treatments also produced reproducible banding patterns. These data permit an accurate identification of the X chromosome as well as of the autosomal pairs 1 and 2, and facilitate the construction of nonambiguous karyotypes. They will also stimulate studies on the organization of chromatin in holocentric, holokinetic chromosomes. Finally they could also promote research on chromosomal rearrangements that have occurred during the course of speciation and evolution of aphids, since these kinds of events may be significantly affected by the condition of chromosomal holocentrism.Key words: aphids, holocentric chromosomes, chromosome banding, heterochromatin.

Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 465-470 ◽  
Author(s):  
G. C. Manicardi ◽  
D. Bizzaro ◽  
E. Galli ◽  
U. Bianchi

Holocentric chromosomes, prepared by spreading embryo cells obtained from Megoura viciae parthenogenetic females, have been C-banded, enzymatically digested in situ using the specific endonucleases DdeI (C↓TNAG), DraI (TTT↓AAA), Tru9I (TT↓AA), and CfoI (GCG↓C), and subsequently stained with Giemsa, DAPI, CMA3, and AgNO3. We observed that the X chromosome had the best defined banding patterns. In the M. viciae X chromosome there is a certain amount of heterogeneity in heterochromatic DNA composition. In fact, the GC-rich NOR-associated heterochromatin differs from other heterochromatic bands that are characterized by AT-rich DNAs. Our data also indicate that, in M. viciae holocentric chromosomes, all heterochromatic blocks are accessible to in situ enzyme attack, the only limit to the digestion being the presence or absence of recognition targets. This is an interesting point, since, in monocentric chromosomes, it is well known that in situ endonuclease digestion is heavily affected not only by DNA base composition but also by chromatin compactness that may limit enzyme accessibility to their specific targets. Key words : heterochromatin, holocentric chromosomes, aphids.


1977 ◽  
Vol 19 (2) ◽  
pp. 265-270
Author(s):  
Richard D. Kreutzer

Interspecific crosses were made between the Palearctic species Anopheles atroparvus Van Thiel and the Nearctic species A. punctipennis Say. Except for most of the X chromosomes, an inverted region in 3R, and band intensity differences the salivary gland chromosome banding patterns are the same in both species. Despite this high level of chromosomal homology very little synapsis of identically banded regions was observed in hybrid complements. This asynapsis and the fact that no adults were produced from either the cross or the reciprocal indicate that there are significant genetic differences between the species.


1980 ◽  
Vol 22 (1) ◽  
pp. 61-67 ◽  
Author(s):  
E. J. Ward

A procedure for chromosome banding in triticale has been shown to be equally effective on maize, Zea mays L., root tip chromosomes. Stocks of known knob constitution were used to demonstrate that differentially stained regions of C-banded mitotic chromosomes corresponded with knobs. The large knob and prominent chromomeres of abnormal chromosome 10 were also differentiated, as was the centric heterochromatin of B chromosomes. However, the large distal heterochromatic portion of the B was not differentiated by the procedure.


Genome ◽  
1988 ◽  
Vol 30 (3) ◽  
pp. 372-379 ◽  
Author(s):  
V. Baimai ◽  
A. Poopittayasataporn ◽  
U. Kijchalao

A reference photomap of the larval salivary gland, polytene chromosomes of the Anopheles dims complex (species A) is presented. Samples of species A, B, C, and D from natural populations in Thailand were compared to this standard map using the larval progeny of wild-caught females. All species show differences in their chromosome banding patterns involving band size, number, and shape, particularly at the free ends of the X, 2R, and 2L. These differences provide useful diagnostic characters for separating members of the species complex. However, overall banding patterns are conservative in the group: species A, B, and C are virtually homosequential. Species D is highly polymorphic for a single paracentric inversion in each of the four autosomal arms and has a fixed inversion on the X chromosome. This same X chromosome inversion occurs at low frequency in species A.Key words: Anopheles dirus, larval polytene chromosome, inversion polymorphisms.


1977 ◽  
Vol 19 (4) ◽  
pp. 625-632 ◽  
Author(s):  
F. P. H. Chan ◽  
F. R. Sergovich ◽  
E. L. Shaver

A detailed analysis of rabbit mitotic chromosomes stained with quinacrine and Trypsin-Giemsa methods to elucidate the Q and G bands is presented. Each of the 21 pairs of autosomes can be identified unequivocally. The sex chromosomes can also be distinguished from the autosomes. The X chromosome is a medium length submetacentric with its own distinctive banding pattern. The Y chromosome is the smallest acrocentric chromosome and fluoresces with a medium intensity.


Genetics ◽  
1974 ◽  
Vol 78 (2) ◽  
pp. 703-714
Author(s):  
Sen Pathak ◽  
A Dean Stock

ABSTRACT A comparison of the Giemsa-banding patterns of the X chromosomes in various mammalian species including man indicates that two major bands (A and B), which are resistant to trypsin and urea-treatments, are always present irrespective of the gross morphology of the X chromosomes. This is true in all mammalian species with the "original or standard type" X chromosomes (5-6% of the haploid genome) thus far analyzed. In the unusually large-sized X chromosomes the extra chromosomal material may be due either to the addition of genetically inert constitutive heterochromatin or to an X-autosome translocation. In these X chromosomes two major bands are present in the actual X-chromosome segment. Our data on C and G band patterns also support Ohno's hypothesis that the mammalian X chromosome is extremely conservative in its genetic content, in spite of its cytogenetic variability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Richard S. Lee ◽  
Sophia Q. Song ◽  
Henri M. Garrison-Desany ◽  
Jenny L. Carey ◽  
Patricia Lasutschinkow ◽  
...  

Abstract Background Equal dosage of X-linked genes between males and females is maintained by the X-inactivation of the second X chromosome in females through epigenetic mechanisms. Boys with aneuploidy of the X chromosome exhibit a host of symptoms such as low fertility, musculoskeletal anomalies, and cognitive and behavioral deficits that are presumed to be caused by the abnormal dosage of these genes. The objective of this pilot study is to assess the relationship between CpG methylation, an epigenetic modification, at several genes on the X chromosome and behavioral dysfunction in boys with supernumerary X chromosomes. Results Two parental questionnaires, the Behavior Rating Inventory of Executive Function (BRIEF) and Child Behavior Checklist (CBCL), were analyzed, and they showed expected differences in both internal and external behaviors between neurotypical (46,XY) boys and boys with 49,XXXXY. There were several CpGs in AR and MAOA of boys with 49,XXXXY whose methylation levels were skewed from levels predicted from having one active (Xa) and three inactive (Xi) X chromosomes. Further, methylation levels of multiple CpGs in MAOA showed nominally significant association with externalizing behavior on the CBCL, and the methylation level of one CpG in AR showed nominally significant association with the BRIEF Regulation Index. Conclusions Boys with 49,XXXXY displayed higher levels of CpG methylation at regulatory intronic regions in X-linked genes encoding the androgen receptor (AR) and monoamine oxidase A (MAOA), compared to that in boys with 47,XXY and neurotypical boys. Our pilot study results suggest a link between CpG methylation levels and behavior in boys with 49,XXXXY.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


2021 ◽  
Vol 22 (3) ◽  
pp. 1114
Author(s):  
Ali Youness ◽  
Charles-Henry Miquel ◽  
Jean-Charles Guéry

Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.


Sign in / Sign up

Export Citation Format

Share Document