scholarly journals A genomic investigation of the putative contact zone between divergent Brown Creeper (Certhia americana) lineages: chromosomal patterns of genetic differentiation

Genome ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Joseph D. Manthey ◽  
Mark B. Robbins ◽  
Robert G. Moyle

Sky islands, or montane forest separated by different lowland habitats, are highly fragmented regions that potentially limit gene flow between isolated populations. In the sky islands of the Madrean Archipelago (Arizona, USA), various taxa display different phylogeographic patterns, from unrestricted gene flow among sky islands to complex patterns with multiple distinct lineages. Using genomic-level approaches allows the investigation of differential patterns of gene flow, selection, and genetic differentiation among chromosomes and specific genomic regions between sky island populations. Here, we used thousands of SNPs to investigate the putative contact zone of divergent Brown Creeper (Certhia americana) lineages in the Madrean Archipelago sky islands. We found the two lineages to be completely allopatric (during the breeding season) with a lack of hybridization and gene flow between lineages and no genetic structure among sky islands within lineages. Additionally, the two lineages inhabit different climatic and ecosystem conditions and have many local primary song dialects in the southern Arizona mountain ranges. We identified a positive relationship between genetic differentiation and chromosome size, but the sex chromosome (Z) was not found to be an outlier. Differential patterns of genetic differentiation per chromosome may be explained by genetic drift—possibly in conjunction with non-random mating and non-random gene flow—due to variance in recombination rates among chromosomes.

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Andrzej Falniowski ◽  
Vladimir Pešić ◽  
Brian Lewarne ◽  
Jozef Grego ◽  
Aleksandra Rysiewska ◽  
...  

AbstractThe subterranean aquatic snails may serve as a model of endemism and isolation vs. migration in subterranean habitats. The aim of the present paper is to verify the hypothesis that subterranean aquatic snails can migrate through diverse subterranean habitats, applying four molecular markers as well as a RAPD technique and shell morphometry. They were used to estimate the differences and gene flow between populations of the hydrobiid subterranean aquatic species Montenegrospeum bogici, collected in the Dinaric karst region. Three molecularly distinct taxonomic units were distinguished. The mOTU B was found at single locality, mOTU C at two, but the mOTU A at ten localities, scattered along 236 km distance, at two of them in sympatry with either mOTU B or C. Within mOTU A, the estimated levels of the gene flow were high. The pairwise measures of genetic differentiation were statistically significantly associated with geographic distances between the populations. In general, neither the infinite-island model of interpopulation differentiation, expected for isolated populations, nor the stepping-stone one, but rather the isolation-by-distance model explained the observed pattern. Our results suggest that interstitial habitats provide ways of migration for the stygobiont M. bogici, as has been already suggested for other subterranean gastropods.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Having identified small geographically and genetically isolated populations, we need to determine whether they are suffering genetic erosion, and if so, whether there are any other populations to which they could be crossed. We should next ask whether crossing is expected to be harmful or beneficial, and if beneficial, whether the benefits would be large enough to justify a genetic rescue attempt. Here, we address these questions based on the principles established in the preceding chapters.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Most species now have fragmented distributions, often with adverse genetic consequences. The genetic impacts of population fragmentation depend critically upon gene flow among fragments and their effective sizes. Fragmentation with cessation of gene flow is highly harmful in the long term, leading to greater inbreeding, increased loss of genetic diversity, decreased likelihood of evolutionary adaptation and elevated extinction risk, when compared to a single population of the same total size. The consequences of fragmentation with limited gene flow typically lie between those for a large population with random mating and isolated population fragments with no gene flow.


The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Catalina Palacios ◽  
Silvana García-R ◽  
Juan Luis Parra ◽  
Andrés M Cuervo ◽  
F Gary Stiles ◽  
...  

Abstract Ecological speciation can proceed despite genetic interchange when selection counteracts the homogenizing effects of migration. We tested predictions of this divergence-with-gene-flow model in Coeligena helianthea and C. bonapartei, 2 parapatric Andean hummingbirds with marked plumage divergence. We sequenced putatively neutral markers (mitochondrial DNA [mtDNA] and nuclear ultraconserved elements [UCEs]) to examine genetic structure and gene flow, and a candidate gene (MC1R) to assess its role underlying divergence in coloration. We also tested the prediction of Gloger’s rule that darker forms occur in more humid environments, and examined morphological variation to assess adaptive mechanisms potentially promoting divergence. Genetic differentiation between species was low in both ND2 and UCEs. Coalescent estimates of migration were consistent with divergence with gene flow, but we cannot reject incomplete lineage sorting reflecting recent speciation as an explanation for patterns of genetic variation. MC1R variation was unrelated to phenotypic differences. Species did not differ in macroclimatic niches but were distinct in morphology. Although we reject adaptation to variation in macroclimatic conditions as a cause of divergence, speciation may have occurred in the face of gene flow driven by other ecological pressures or by sexual selection. Marked phenotypic divergence with no neutral genetic differentiation is remarkable for Neotropical birds, and makes C. helianthea and C. bonapartei an appropriate system in which to search for the genetic basis of species differences employing genomics.


Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


2008 ◽  
Vol 2 (3) ◽  
pp. 338-342 ◽  
Author(s):  
Yan Geng ◽  
Zhangping Yang ◽  
Hong Chang ◽  
Yongjiang Mao ◽  
Wei Sun ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


Sign in / Sign up

Export Citation Format

Share Document