scholarly journals Evolutionary history and genetic connectivity across highly fragmented populations of an endangered daisy

Heredity ◽  
2021 ◽  
Author(s):  
Yael S. Rodger ◽  
Alexandra Pavlova ◽  
Steve Sinclair ◽  
Melinda Pickup ◽  
Paul Sunnucks

AbstractConservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.

2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages. Conclusions Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized and abolished for the maintenance of genetic diversity within a breed.


2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background: Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results: Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages.Conclusions: Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized, their necessity evaluated critically and perhaps abolished in order to maintain genetic diversity within a breed. Subpopulation differentiation might also result in false positive signals in genome-wide association studies of different traits.Lay summary: Purebred dogs are, by definition, reproductively isolated from other breeds. However, similar isolation can also occur within a breed due to conflicting breeder ideals and geographic distances between the dog populations. We show here that both of these examples can contribute to breed division, with subsequent loss of genetic variation in the resulting breed lineages. Breeders should avoid creating unnecessary boundaries between breed lineages and facilitate the exchange of dogs between countries.


2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 142-150
Author(s):  
Jessica Worthington Wilmer ◽  
Andrew P. Amey ◽  
Carmel McDougall ◽  
Melanie Venz ◽  
Stephen Peck ◽  
...  

Sclerophyll woodlands and open forests once covered vast areas of eastern Australia, but have been greatly fragmented and reduced in extent since European settlement. The biogeographic and evolutionary history of the biota of eastern Australia’s woodlands also remains poorly known, especially when compared to rainforests to the east, or the arid biome to the west. Here we present an analysis of patterns of mitochondrial genetic diversity in two species of Pygopodid geckos with distributions centred on the Brigalow Belt Bioregion of eastern Queensland. One moderately large and semi-arboreal species, Paradelma orientalis, shows low genetic diversity and no clear geographic structuring across its wide range. In contrast a small and semi-fossorial species, Delma torquata, consists of two moderately divergent clades, one from the ranges and upland of coastal areas of south-east Queensland, and other centred in upland areas further inland. These data point to varying histories of geneflow and refugial persistance in eastern Australia’s vast but now fragmented open woodlands. The Carnarvon Ranges of central Queensland are also highlighted as a zone of persistence for cool and/or wet-adapted taxa, however the evolutionary history and divergence of most outlying populations in these mountains remains unstudied.


2015 ◽  
Vol 63 (4) ◽  
pp. 279 ◽  
Author(s):  
Josef Krawiec ◽  
Siegfried L. Krauss ◽  
Robert A. Davis ◽  
Peter B. S. Spencer

Populations in fragmented urban remnants may be at risk of genetic erosion as a result of reduced gene flow and elevated levels of inbreeding. This may have serious genetic implications for the long-term viability of remnant populations, in addition to the more immediate pressures caused by urbanisation. The population genetic structure of the generalist skink Ctenotus fallens was examined using nine microsatellite markers within and among natural vegetation remnants within a highly fragmented urban matrix in the Perth metropolitan area in Western Australia. These data were compared with samples from a large unfragmented site on the edge of the urban area. Overall, estimates of genetic diversity and inbreeding within all populations were similar and low. Weak genetic differentiation, and a significant association between geographic and genetic distance, suggests historically strong genetic connectivity that decreases with geographic distance. Due to recent fragmentation, and genetic inertia associated with low genetic diversity and large population sizes, it is not possible from these data to infer current genetic connectivity levels. However, the historically high levels of gene flow that our data suggest indicate that a reduction in contemporary connectivity due to fragmentation in C. fallens is likely to result in negative genetic consequences in the longer term.


2016 ◽  
Author(s):  
Vikas Kumar ◽  
Fritjof Lammers ◽  
Tobias Bidon ◽  
Markus Pfenninger ◽  
Lydia Kolter ◽  
...  

AbstractBears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to the closely related polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using three different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains numerous uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to massive amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. The increasing evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.


2021 ◽  
Author(s):  
Lepais Olivier ◽  
Abdeldjalil Aissi ◽  
Errol Véla ◽  
Yassine Beghami

Rear-edge populations represent reservoirs of potentially unique genetic diversity but are particularly vulnerable to global changes. While continental-scale phylogeographic studies usually do not cover these populations, more focused local scale study of rear-edge populations should help better understand both past evolutionary history and its consequences for the persistence and conservation of these potentially unique populations. We studied molecular variation at 36 sequenced nuclear microsatellites in 11 rear-edge Quercus faginea and Q. canariensis populations across Algeria to shed light on taxonomic relationship, population past evolutionary history and recent demographic trajectory. We used descriptive approach and simulation-based inference to assess the information content and complementarity of linked microsatellite and flanking sequence variations. Genetic differentiation among populations classified into eight well-defined genetic clusters do not allow to unambiguously delineate two species. Instead, continuous level of genetic differentiation indicates interspecific gene flow or drift in isolation. Whereas the analysis of microsatellite variation allowed inferring recent interspecific gene flow, additional nucleotide variation in flanking sequences, by reducing homoplasy, pointed towards ancient interspecific gene flow followed by drift in isolation. The assessment of the weight of each polymorphism in the inference demonstrates the value of linked variation with contrasted mutational mechanisms and rates to refine historical demographic inference. Past population size decline inferred in some of these oak populations as well as low contemporary effective population size for most populations is a concern for the persistence of these populations of high evolutionary significance and conservation value.


2018 ◽  
Author(s):  
Gang Li ◽  
Henrique V. Figueiro ◽  
Eduardo Eizirik ◽  
William J. Murphy

Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of gene flow that result in a mosaic of phylogenetic signals that interact with recombinational variation. Here we tested the validity of this assumption with a recombination-aware analysis of whole genome sequences from 27 species of the cat family. We found that the prevailing phylogenetic signal within the autosomes is not always representative of speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within large, conserved X-chromosome recombination deserts that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ~40%. We conclude that standard phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic partitioning of phylogenetic signal relative to recombination rate, and its interplay with historical hybridization.


2019 ◽  
Author(s):  
Ana Filipa Moutinho ◽  
Nina Serén ◽  
Joana Paupério ◽  
Teresa Luísa Silva ◽  
Fernando Martínez-Freiría ◽  
...  

Abstract Background Evidence suggests that complex paleoclimatic and geological events help shape species distributions, thus affecting their evolutionary history. In Sahara-Sahel, climatic oscillations shifted the desert extent during the Pliocene-Pleistocene interval, triggering the diversification of several species. Here, we investigated how these biogeographical and ecological events have shaped patterns of genetic diversity and divergence in African Jerboas, desert specialist species. We focused on two sister and cryptic species, Jaculus jaculus and J. hirtipes , where we (1) evaluated their genetic differentiation, (2) reconstructed their evolutionary and demographic history; (3) tested the level of gene flow between them, and (4) assessed their ecological niche divergence. Results The analyses based on 231 individuals sampled throughout North Africa, 8 sequence fragments (one mitochondrial and seven single copy nuclear DNA, including two candidate genes for fur coloration: MC1R and Agouti ), 6 microsatellite markers and ecological modelling revealed: (1) two distinct genetic lineages with overlapping distributions, in agreement with their classification as different taxa, J. jaculus and J. hirtipes , with (2) low levels of gene flow and strong species delimitation, (3) high genetic diversity but no apparent geographic population structure within species, suggesting long-distance migration between remote locations, and (4) low level of large-scale ecological divergence between the two taxa, suggesting species micro-habitat specialization. Conclusions Overall, our results suggest a speciation event that occurred during the Pliocene-Pleistocene transition. The contemporary distribution of genetic variation suggests ongoing population expansions, demonstrating the ability of these species for fast and long-range dispersal. Despite the largely overlapping distributions at a macrogeographic scale, our genetic results suggest that the two species remain reproductively isolated, as only negligible levels of gene flow were observed. The overlapping ecological preferences at a macro-geographic scale and the ecological divergence at the micro-habitat scale suggest that local adaptation may have played a crucial role in the speciation process of these species.


2019 ◽  
Author(s):  
Xun Xu ◽  
Song Ge ◽  
Fu-min Zhang

Abstract Background: Reciprocal gene loss (RGL) of duplicate genes is an important genetic resource of reproductive isolation, which is essential for speciation. In the past decades, various RGL patterns have been revealed, but RGL process is still poorly understood. The RGL of the duplicate DOPPELGANGER1 (DPL1) and DOPPELGANGER2 (DPL2) gene can lead to BDM-type hybrid incompatibility between two rice subspecies. The evolutionary history of the duplicate genes, including their origin and mechanism of duplication as well as their evolutionary divergence after the duplication, remains unclear. In this study, we investigated the evolutionary history of the duplicate genes for gaining insights into the process of RGL.Results: We reconstructed phylogenetic relationships of DPL copies from all 15 diploid species representing six genome types of rice genus and then found that all the DPL copies from the latest diverged A- and B-genome gather into one monophyletic clade. Southern blot analysis also detected definitely two DPL copies only in A- and B-genome. High conserved collinearity can be observed between A- and B-genomic segments containing DPL1 and DPL2 respectively but not between DPL1 and DPL2 segments. Investigations of transposon elements indicated that DPL duplication is related to DNA transposons. Likelihood-based analyses with branch models showed a relaxation of selective constraint in DPL1 lineage but an enhancement in DPL2 lineage after DPL duplication. Sequence analysis also indicated that quite a few defective DPL1 can be found in 6 wild and cultivated species out of all 8 species of A-genome but only one defective DPL2 occurs in a cultivated rice subspecies. Conclusions: DPL duplication of rice originated in the recent common ancestor of A- and B-genome about 6.76 million years ago and the duplication was possibly caused by DNA transposons. The DPL1 is a redundant copy and has being in the process of pseudogenization, suggesting that artificial selection may play an important role in forming the RGL of DPLs between two rice subspecies during the domestication.


Sign in / Sign up

Export Citation Format

Share Document