scholarly journals Isolation and endemism in subterranean aquatic snails: unexpected case of Montenegrospeum bogici (Pešić et Glöer, 2012) (Gastropoda: Truncatelloidea: Hydrobiidae)

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Andrzej Falniowski ◽  
Vladimir Pešić ◽  
Brian Lewarne ◽  
Jozef Grego ◽  
Aleksandra Rysiewska ◽  
...  

AbstractThe subterranean aquatic snails may serve as a model of endemism and isolation vs. migration in subterranean habitats. The aim of the present paper is to verify the hypothesis that subterranean aquatic snails can migrate through diverse subterranean habitats, applying four molecular markers as well as a RAPD technique and shell morphometry. They were used to estimate the differences and gene flow between populations of the hydrobiid subterranean aquatic species Montenegrospeum bogici, collected in the Dinaric karst region. Three molecularly distinct taxonomic units were distinguished. The mOTU B was found at single locality, mOTU C at two, but the mOTU A at ten localities, scattered along 236 km distance, at two of them in sympatry with either mOTU B or C. Within mOTU A, the estimated levels of the gene flow were high. The pairwise measures of genetic differentiation were statistically significantly associated with geographic distances between the populations. In general, neither the infinite-island model of interpopulation differentiation, expected for isolated populations, nor the stepping-stone one, but rather the isolation-by-distance model explained the observed pattern. Our results suggest that interstitial habitats provide ways of migration for the stygobiont M. bogici, as has been already suggested for other subterranean gastropods.

Author(s):  
M. Abbiati ◽  
F. Maltagliati

The occurrence of genetic differentiation among western Mediterranean Hediste diversicolor (Polychaeta: Nereididae) populations was assessed by allozyme electrophoresis on cellulose acetate. Seventeen loci were analysed in four populations. The level of the genetic variability was markedly low (mean HL range: 0.014–0.034), but comparable to that of other brackish water nereidids. The values of Nei genetic distance index (D) confirm the existence of genetic differentiation between the geographically isolated populations at Venice, Elba, Navicelli and Serchio D range: 0.128–0.356). However, the two samples from Serchio and Navicelli, ~15 km apart, were not genetically different (D=0·00005). The level of genetic differentiation in H. diversicolor populations followed the isolation-by-distance model. Reduced gene flow among H. diversicolor populations may be explained by its limited dispersal capacity and the eco-physiological barriers that occur between different brackish habitats.


2019 ◽  
Vol 49 (8) ◽  
Author(s):  
Caetano Miguel Lemos Serrote ◽  
Lia Rejane Silveira Reiniger ◽  
Leonardo Severo da Costa ◽  
Charlene Moro Stefanel ◽  
Karol Buuron da Silva ◽  
...  

ABSTRACT: Gene flow is important for the conservation of genetic resources to allow connectivity of geographically isolated populations and which genetic variability is reduced. Gene movement is a function of flow rate and model. Understanding how gene flow occurs can contribute to the conservation and selection of priority populations that could benefit from an eventual intervention. Simulation softwares allow making inferences about past events based on current datasets or predict future phenomena under real genetic scenarios. Adverse phenomena can be predicted and actions can be taken to avoid them. The aim of this study was to identify a model and the gene flow rates that could explain genetic structure of eight forest fragments of Cabralea canjerana in development in the Brazilian Atlantic Rainforest. To do this, simulations were performed with the EASYPOP software using a microsatellite marker dataset obtained for the species by Melo and collaborators, in 2012, 2014 and 2016. We tested five models and nine migration rates and we selected the model that produced values closer to those previously obtained for them. Criteria used for selection were the observed and expected heterozygosity and the Wright’s F Statistics obtained in the simulations. The gene flow model selected was the isolation by distance model that used a rate of 0.1. We observed high levels of genetic differentiation among the fragments as result of their reproductive isolation. To allow homogenization of the allelic frequencies through gene flow, the solution would be to create ecological corridors with the aim of connecting distant fragments.


2019 ◽  
Vol 190 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kin Onn Chan ◽  
Rafe M Brown

Abstract The interplay between environmental attributes and evolutionary processes can provide valuable insights into how biodiversity is generated, partitioned and distributed. This study investigates the role of spatial, environmental and historical factors that could potentially drive diversification and shape genetic variation in Malaysian torrent frogs. Torrent frogs are ecologically conserved, and we hypothesize that this could impose tight constraints on dispersal routes, gene flow and consequently genetic structure. Moreover, levels of gene flow were shown to vary among populations from separate mountain ranges, indicating that genetic differentiation could be influenced by landscape features. Using genome-wide single nucleotide polymorphisms, in conjunction with landscape variables derived from Geographic Information Systems, we performed distance-based redundancy analyses and variance partitioning to disentangle the effects of isolation-by-distance (IBD), isolation-by-resistance (IBR) and isolation-by-colonization (IBC). Our results demonstrated that IBR contributed minimally to genetic variation. Intraspecific population structure can be largely attributed to IBD, whereas interspecific diversification was primarily driven by IBC. We also detected two distinct population bottlenecks, indicating that speciation events were likely driven by vicariance or founder events.


1982 ◽  
Vol 14 (2) ◽  
pp. 241-247 ◽  
Author(s):  
John H. Relethford

SummaryThe estimation of genetic similarity from correspondence of surnames (isonymy) allows investigation of historical population structure. This study uses surname data from seven isolates located along the west coast of Ireland during the 1890s to assess geographic and historic influences on population structure. Observed genetic variation among populations shows a close fit with the expected isolation by distance model, with estimated parameters of isolation and migration being similar to those obtained in other studies of isolated populations. Local genetic variation appears to be due primarily to the size of the local breeding population, with deviations being explained in terms of recent emigration.


2016 ◽  
Author(s):  
Johanna Bertl ◽  
Harald Ringbauer ◽  
Michael G. B. Blum

AbstractSecondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of Linkage Disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index Ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenhao Yu ◽  
Baofeng Wu ◽  
Xinyu Wang ◽  
Zhi Yao ◽  
Yonghua Li ◽  
...  

Abstract Spatial scale partly explains the differentiated effects of habitat fragmentation on plant biodiversity, but the mechanisms remain unclear. To investigate the effects of habitat fragmentation on genetic diversity at different scales, we sampled Actinidia chinensis Planch. at broad and fine scales, China. The broad-scale sampling included five mountain populations and one oceanic island population (Zhoushan Archipelago), and the fine-scale sampling covered 11 lake islands and three neighboring land populations in Thousand-Island Lake (TIL). These populations were genotyped at 30 microsatellite loci, and genetic diversity, gene flow, and genetic differentiation were evaluated. Genetic differentiation was positively related to geographical distance at the broad scale, indicating an isolation-by-distance effect of habitat fragmentation on genetic diversity. The oceanic population differed from the mainland populations and experienced recent bottleneck events, but it showed high gene flow with low genetic differentiation from a mountain population connected by the Yangtze River. At the fine scale, no negative genetic effects of habitat fragmentation were found because seed dispersal with water facilitates gene flow between islands. The population size of A. chinensis was positively correlated with the area of TIL islands, supporting island biogeography theory, but no correlation was found between genetic diversity and island area. Our results highlight the scale-dependent effects of habitat fragmentation on genetic diversity and the importance of connectivity between island-like isolated habitats at both the broad and fine scales.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nelli Rönkä ◽  
Veli-Matti Pakanen ◽  
Angela Pauliny ◽  
Robert L. Thomson ◽  
Kimmo Nuotio ◽  
...  

Abstract Background Populations living in fragmented habitats may suffer from loss of genetic variation and reduced between-patch dispersal, which are processes that can result in genetic differentiation. This occurs frequently in species with reduced mobility, whereas genetic differentiation is less common among mobile species such as migratory birds. The high dispersal capacity in the latter species usually allows for gene flow even in fragmented landscapes. However, strongly philopatric behaviour can reinforce relative isolation and the degree of genetic differentiation. The Southern Dunlin (Calidris alpina schinzii) is a philopatric, long-distance migratory shorebird and shows reduced dispersal between isolated breeding patches. The endangered population of the Southern Dunlin breeding at the Baltic Sea has suffered from habitat deterioration and fragmentation of coastal meadows. We sampled DNA across the entire population and used 12 polymorphic microsatellite loci to examine whether the environmental changes have resulted in genetic structuring and loss of variation. Results We found a pattern of isolation-by-distance across the whole Baltic population and genetic differentiation between local populations, even within the southern Baltic. Observed heterozygosity was lower than expected throughout the range and internal relatedness values were positive indicating inbreeding. Conclusions Our results provide long-term, empirical evidence for the theoretically expected links between habitat fragmentation, population subdivision, and gene flow. They also demonstrate a rare case of genetic differentiation between populations of a long-distance migratory species. The Baltic Southern Dunlin differs from many related shorebird species that show near panmixia, reflecting its philopatric life history and the reduced connectivity of its breeding patches. The results have important implications as they suggest that reduced connectivity of breeding habitats can threaten even long-distance migrants if they show strong philopatry during breeding. The Baltic Southern Dunlin warrants urgent conservation efforts that increase functional connectivity and gene flow between breeding areas.


2021 ◽  
Author(s):  
Majela Hernández Rodríguez ◽  
Ernesto Testé Lozano ◽  
Emily Veltjen ◽  
Jhonny Quintana Delgado ◽  
Alejandro Palmarola Bejerano ◽  
...  

Abstract Landscape features impact gene flow and the spatial patterns of genetic variation between populations of a species. Because many Magnoliaceae species occur in fragmented and highly disturbed landscapes, the family is an excellent model for landscape genetic studies. This research focuses on the subspecies and localities of Magnolia cubensis and aims to: (1) compare the genetic diversity, (2) search for genetic patterns, (3) describe the functional connectivity and (4) access the structural connectivity of the landscape. This study employs 21 microsatellite markers on two subspecies, complemented with landscape characteristics of the Guamuhaya and Sierra Maestra massifs in Cuba. Magnolia cubensis subsp. acunae does not have a well-defined spatial genetic pattern: there is no evidence of isolation by distance or spatial autocorrelation and the little genetic differentiation between the two localities does not reflect the characteristics of the landscape that separates them or the cost values to cross it. Magnolia cubensis subsp. cubensis presents evidence of isolation by distance and the autocorrelation analyses indicate that the approximate scale of the genetic neighborhood is between 35 and 40 km. There is a marked genetic structure with probability values that indicate the existence of three genetic groups. Large genetic differentiation was only found between Gran Piedra and the other localities, which reflects low gene flow. Our results support the recognition of these subspecies at the species level. We define one evolutionary significant unit in Magnolia cubensis subsp. acunae and two evolutionary significant units in Magnolia cubensis subsp. cubensis. These results must be combined with ecological, social and distribution data, in order to obtain a more accurate and realistic perspective of the conservation management strategies for these taxa.


2020 ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusion Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.


2017 ◽  
Vol 65 (4) ◽  
pp. 1322
Author(s):  
Bárbara Cruz Salazar ◽  
Consuelo Lorenzo ◽  
Eduardo Espinoza Medinilla ◽  
Sergio López

Lepus flavigularis, is an endemic and endangered species, with only four populations inhabiting Oaxaca, México: Montecillo Santa Cruz, Aguachil, San Francisco del Mar Viejo and Santa María del Mar. Nevertheless, human activities like poaching and land use changes, and the low genetic diversity detected with mitochondrial DNA and allozymes in previous studies, have supported the urgent need of management strategies for this species, and suggest the definition of management units. For this, it is necessary to study the genetic structure with nuclear genes, due to their inheritance and high polymorphism, therefore, the objective of this study was to examine the variation and genetic structure of L. flavigularis using nuclear microsatellites. We sampled four populations of L. flavigularis and a total of 67 jackrabbits were captured by night sampling during the period of 2001 to 2006. We obtained the genomic DNA by the phenol-chloroform-isoamyl alcohol method. To obtain the diversity and genetic structure, seven microsatellites were amplified using the Polymerase Chain Reaction (PCR); the amplifications were visualized through electrophoresis with 10 % polyacrylamide gels, dyed with ethidium bromide. Genetic diversity was determined using the software GenAlEx v. 6.4, and genetic structure was obtained with ARLEQUIN v. 3.1; null alleles were evaluated using the program Micro-Checker v.2.2.2. Additionally, a Bayesian analysis was performed with software STRUCTURE v. 2.2.3., and the isolation by distance (IBD) was studied using the program PASSAGE v.2.0.11.6. Our results showed that the genetic variation found was low (HO = 0.30, HE = 0.24) when compared to other jackrabbit species. Fixed alleles and moderate levels of genetic differentiation (FST = 0.18, P = 0.001) were detected among populations, indicating the effect of the genetic drift and limited gene flow. Bayesian clustering analysis revealed two groups: (1) jackrabbits from Montecillo Santa Cruz, and (2) individuals living in Aguachil, San Francisco del Mar Viejo and Santa María del Mar. No evidence was found of isolation by distance. It is possible that the geographic barriers present between populations (e.g. lagoons, human settlements), rather than the geographical distance between them, may explain the observed genetic structure. The inbreeding coefficient was negative (FIS = -0.27, P = 0.03), indicating genetic sub-structure in populations. We suggest two management units based on the genetically closer populations, which will help define precise conservation actions in L. flavigularis. This research is the basis for defining translocation of individuals between populations, nevertheless, a more extensive future study, with specific molecular markers for L. flavigularis, is required. In addition, it is necessary to analyze the barriers that limit the gene flow, since it is urgent to reduce the genetic differentiation between populations and increase the genetic diversity of this species. 


Sign in / Sign up

Export Citation Format

Share Document