The Role of O2 Supply in Muscle Fatigue

2002 ◽  
Vol 27 (1) ◽  
pp. 56-69 ◽  
Author(s):  
Russell T. Hepple

It is well established that altering O2 delivery to contracting skeletal muscle affects human performance. In this respect, a reduced O2 supply (e.g., hypoxia) increases the rate of muscle fatigue, whereas increasing O2 supply (e.g., hyperoxia) reduces the rate of fatigue. Interestingly, the faster onset of fatigue in moderate hypoxia does not appear to be a consequence of mitochondrial O2 limitation because these effects occur at submaximal rates of O2 consumption for these conditions and at O2 tensions well above that which impairs mitochondrial O2 uptake in vitro. Alterations in O2 supply modulate the regulation of cellular respiration and may affect the onset of impaired Ca2+ handling with fatigue. Specifically, changes in O2 supply alter the coupling between phosphocreatine hydrolysis and O2 uptake in contracting muscles, which by determining the rate of inorganic phosphate (Pi) accumulation may affect Ca2+ release. Partial ischemia differs somewhat in that the reduction in force could be due to reduced O2 supply and/or impaired removal of metabolic by-products secondary to insufficient blood flow. Nonetheless, recent evidence shows a parallel decline and restoration of force with alterations in O2 supply but not blood flow alone during submaximal contractions. Furthermore, the causes of fatigue are similar when O2 is plentiful and when it is reduced. Key words: muscular contractions, aerobic performance, hypoxia, hyperoxia, muscle bioenergetic

2000 ◽  
Vol 89 (4) ◽  
pp. 1293-1301 ◽  
Author(s):  
Bruno Grassi ◽  
Michael C. Hogan ◽  
Kevin M. Kelley ◽  
William G. Aschenbach ◽  
Jason J. Hamann ◽  
...  

A previous study (Grassi B, Gladden LB, Samaja M, Stary CM, and Hogan MC, J Appl Physiol 85: 1394–1403, 1998) showed that convective O2 delivery to muscle did not limit O2 uptake (V˙o 2) on-kinetics during transitions from rest to contractions at ∼60% of peakV˙o 2. The present study aimed to determine whether this finding is also true for transitions involving contractions of higher metabolic intensities.V˙o 2 on-kinetics were determined in isolated canine gastrocnemius muscles in situ ( n = 5) during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions corresponding to the muscle peakV˙o 2. Two conditions were compared: 1) spontaneous adjustment of muscle blood flow (Q˙) (Control) and 2) pump-perfused Q˙, adjusted ∼15–30 s before contractions at a constant level corresponding to the steady-state value during contractions in Control (Fast O2 Delivery). In Fast O2 Delivery, adenosine was infused intra-arterially. Q˙ was measured continuously in the popliteal vein; arterial and popliteal venous O2 contents were measured at rest and at 5- to 7-s intervals during the transition. Muscle V˙o 2 was determined as Q˙times the arteriovenous blood O2 content difference. The time to reach 63% of the V˙o 2 difference between resting baseline and steady-state values during contractions was 24.9 ± 1.6 (SE) s in Control and 18.5 ± 1.8 s in Fast O2 Delivery ( P < 0.05). FasterV˙o 2 on-kinetics in Fast O2Delivery was associated with an ∼30% reduction in the calculated O2 deficit and with less muscle fatigue. During transitions involving contractions at peak V˙o 2, convective O2 delivery to muscle, together with an inertia of oxidative metabolism, contributes in determining theV˙o 2 on-kinetics.


2006 ◽  
Vol 290 (1) ◽  
pp. R84-R89 ◽  
Author(s):  
Kazuhiko Takeuchi ◽  
Noriyuki Miyata ◽  
Marija Renic ◽  
David R. Harder ◽  
Richard J. Roman

Recent studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the fall in cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH), but the factors that stimulate the production of 20-HETE are unknown. This study examines the role of vasoactive factors released by clotting blood vs. the scavenging of nitric oxide (NO) by hemoglobin (Hb) in the fall in CBF after SAH. Intracisternal (icv) injection of blood produced a greater and more prolonged (120 vs. 30 min) decrease in CBF than that produced by a 4% solution of Hb. Pretreating rats with Nω-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg iv) to block the synthesis of NO had no effect on the fall in CBF produced by an icv injection of blood. l-NAME enhanced rather than attenuated the fall in CBF produced by an icv injection of Hb. Blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg iv) prevented the sustained fall in CBF produced by an icv injection of blood and the transient vasoconstrictor response to Hb. Hb (0.1%) reduced the diameter of the basilar artery (BA) of rats in vitro by 10 ± 2%. This response was reversed by TS-011 (100 nM). Pretreatment of vessels with l-NAME (300 μM) reduced the diameter of BA and blocked the subsequent vasoconstrictor response to the addition of Hb to the bath. TS-011 returned the diameter of vessels exposed to l-NAME and Hb to that of control. These results suggest that the fall in CBF after SAH is largely due to the release of vasoactive factors by clotting blood rather than the scavenging of NO by Hb and that 20-HETE contributes the vasoconstrictor response of cerebral vessels to both Hb and blood.


1997 ◽  
Vol 273 (5) ◽  
pp. C1613-C1622 ◽  
Author(s):  
Keith Neu Richmond ◽  
Steven Burnite ◽  
Ronald M. Lynch

In striated muscle the coupling of blood flow to changes in tissue metabolism is hypothesized to be dependent in part on release of vasodilating metabolic by-products generated when mitochondrial metabolism becomes O2 limited. Cytochrome oxidase, the terminal step in oxidative phosphorylation, is half-maximally saturated at <1 mmHg [Formula: see text] in isolated mitochondria. However, blood flow is regulated at tissue[Formula: see text] of ∼20 mmHg. If the affinity of mitochondrial respiration for O2were higher in vivo than in vitro, O2 limitation of mitochondrial metabolism near mean tissue levels could occur. In the present study the [Formula: see text] at which mitochondrial metabolism becomes inhibited (critical[Formula: see text]) was measured for cardiac myocytes in suspension (1.1 ± 0.15 mmHg) and single cells (1.0 ± 0.22 and 1.25 ± 0.22 mmHg in cardiac myocytes and rat spinotrapezius cells, respectively). These measurements are consistent with those from isolated mitochondria, indicating that vasodilators produced when oxidative phosphorylation becomes inhibited may be important for regulating blood flow only in highly glycolytic muscles or under conditions of severe O2limitation.


1991 ◽  
Vol 3 (4) ◽  
pp. 405 ◽  
Author(s):  
RG King ◽  
NM Gude ◽  
BR Krishna ◽  
S Chen ◽  
SP Brennecke ◽  
...  

The human placenta contains both acetylcholine (ACh) and choline acetyltransferase, and in vitro bilaterally perfused placental lobules release ACh. The function of this placental cholinergic system has not yet been clearly defined, although changes occur in it during parturition and it may be linked to placental prostaglandin generation at this time. It has also been suggested that ACh may regulate placental amino-acid transport and/or blood flow. It has been found that ACh release from fetal vessels of bilaterally perfused placental lobules is reduced during preeclampsia but is not necessarily correlated with any change in perfusion pressure or materno-fetal transfer of the nonmetabolizable amino acid alpha-aminoisobutyric acid. However, a correlation has been found between releases from human placental explants of ACh (when inhibited by (2-benzoylethyl)trimethylammonium or vesamicol) and of prostaglandins E2 and F2 alpha. Thus, although the evidence for a role of ACh in the control of placental amino-acid transfer or vascular tone is not conclusive, inhibition of the human placental cholinergic system has been shown to be associated with reduced output of prostaglandins from this tissue.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Tomohiko Ozaki ◽  
Rieko Muramatsu ◽  
Toshiyuki Fujinaka ◽  
Toshiki Yoshimine ◽  
Toshihide Yamashita

Background: Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not fully clarified. In this research, we focused on the role of P2X4 receptor, which sense blood flow changes and is expressed on vascular endothelial cells. Methods: We administrated P2X4 receptor inhibitor into lateral ventricle of C57BL/6J male mice (8-10 weeks) and then conducted middle cerebral artery occlusion (MCAO). Fifteen minutes MCAO was done as IPC 48 hours before 60 minutes MCAO. To examine the necessity of P2X4 receptor expression in vascular endothelial cells, we generated a conditional knockout (CKO) mouse in which the P2X4 receptor was knocked down in VE-cadherin-positive vascular endothelial cells. To investigate molecular change by IPC, we obtained cerebrovascular endothelial cells of mice 48 hours after IPC, and real time PCR and ELISA were evaluated. To examine the molecular expression change on vascular endothelial cells by blood flow, we used in vitro culture system which generates fluid flow and real time PCR was evaluated. Inhibition of P2X4 receptor expression was conducted by P2X4 receptor siRNA transfection. Results: P2X4 receptor antagonist abolished neuroprotection via IPC. Moreover, the effect of IPC to P2X4 receptor CKO mice was smaller than control mice, the infarct volume of P2X4 receptor CKO was larger than control mice after 60 minutes MCAO (p<0.05, Control, n=4; CKO, n=6). IPC induced expression of osteopontin mRNA (p<0.05, n=5). Osteopontin administration attenuates the increase of infarct formation induced by P2X4 receptor inhibition (p<0.05, Control, n=5; Osteopontin, n=6). In vitro, shear stress upregulated expression of osteopontin mRNA (p<0.05, n=3). This upregulation was inhibited by P2X4 receptor siRNA (p<0.05, Control siRNA, n=6; P2X4 receptor siRNA, n=7). Conclusion: These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance by way of the pathway about P2X4 receptor and osteopontin.


Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 707-720 ◽  
Author(s):  
J. Craps ◽  
C. Wilvers ◽  
V. Joris ◽  
B. De Jongh ◽  
J. Vanderstraeten ◽  
...  

Iodine deficiency (ID) induces microvascular changes in the thyroid gland via a TSH-independent reactive oxygen species-hypoxia inducible factor (HIF)-1α-vascular endothelial growth factor (VEGF) pathway. The involvement of nitric oxide (NO) in this pathway and the role of calcium (Ca2+) and of ryanodine receptors (RYRs) in NO synthase 3 (NOS3) activation were investigated in a murine model of goitrogenesis and in 3 in vitro models of ID, including primary cultures of human thyrocytes. ID activated NOS3 and the production of NO in thyrocytes in vitro and increased the thyroid blood flow in vivo. Using bevacizumab (a blocking antibody against VEGF-A) in mice, it appeared that NOS3 is activated upstream of VEGF-A. L-nitroarginine methyl ester (a NOS inhibitor) blocked the ID-induced increase in thyroid blood flow in vivo and NO production in vitro, as well as ID-induced VEGF-A mRNA and HIF-1α expression in vitro, whereas S-nitroso-acetyl-penicillamine (a NO donor) did the opposite. Ca2+ is involved in this pathway as intracellular Ca2+ flux increased after ID, and thapsigargin activated NOS3 and increased VEGF-A mRNA expression. Two of the 3 known mammalian RYR isoforms (RYR1 and RYR2) were shown to be expressed in thyrocytes. RYR inhibition using ryanodine at 10μM decreased ID-induced NOS3 activation, HIF-1α, and VEGF-A expression, whereas RYR activation with ryanodine at 1nM increased NOS3 activation and VEGF-A mRNA expression. In conclusion, during the early phase of TSH-independent ID-induced microvascular activation, ID sequentially activates RYRs and NOS3, thereby supporting ID-induced activation of the NO/HIF-1α/VEGF-A pathway in thyrocytes.


1994 ◽  
Vol 266 (2) ◽  
pp. F275-F282 ◽  
Author(s):  
A. P. Zou ◽  
J. D. Imig ◽  
M. Kaldunski ◽  
P. R. Ortiz de Montellano ◽  
Z. Sui ◽  
...  

The present study evaluated the role of endogenous P-450 metabolites of arachidonic acid (AA) on autoregulation of renal blood flow in rats. Whole kidney and cortical blood flows were well autoregulated when renal perfusion pressure was varied from 150 to 100 mmHg. Infusion of 17-octadecynoic acid (17-ODYA) into the renal artery (33 nmol/min) increased cortical and papillary blood flows by 12.6 +/- 2.5 and 26.5 +/- 4.6%, respectively. After 17-ODYA, autoregulation of whole kidney and cortical blood flows was impaired. Intrarenal infusion of miconazole (8 nmol/min) had no effect on autoregulation of whole kidney, cortical, or papillary blood flows. 17-ODYA (1 microM) inhibited the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) and 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) by renal preglomerular microvessels in vitro by 83.7 +/- 7.4% and 89.0 +/- 4.9%, respectively. Miconazole (1 microM) reduced the formation of EETs by 86.4 +/- 5.7%, but it had no effect on the production of 20-HETE. These results suggest that endogenous P-450 metabolites of AA, particularly 20-HETE, may participate in the autoregulation of renal blood flow.


2008 ◽  
Vol 294 (5) ◽  
pp. H2371-H2381 ◽  
Author(s):  
Gregory M. Dick ◽  
Ian N. Bratz ◽  
Léna Borbouse ◽  
Gregory A. Payne ◽  
Ü. Deniz Dincer ◽  
...  

We previously demonstrated a role for voltage-dependent K+ (KV) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H2O2, as responses were attenuated by the KV channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that KV channels participate in coronary reactive hyperemia and examined the role of KV channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 ± 5% and inhibited hyperemic volume 32 ± 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or NG-nitro-l-arginine methyl ester (l-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or l-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 ± 6% block at 9 μg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 μM correolide, a selective KV1 antagonist (76 ± 7% and 47 ± 2% block, respectively, at 1 μM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 ± 6% block at 10 μg/min) and by correolide in vitro (29 ± 4% block at 1 μM). KV current in smooth muscle cells was inhibited by 4-AP (IC50 1.1 ± 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for KV1 family members was detected in coronary arteries. Our data indicate that KV channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.


Sign in / Sign up

Export Citation Format

Share Document