Establishing design guidelines for compound horizontal curves on three-dimensional alignments

2005 ◽  
Vol 32 (4) ◽  
pp. 615-626 ◽  
Author(s):  
Said Easa ◽  
Essam Dabbour

In current design guides, the minimum radii of compound horizontal curves are based on the design requirements of simple horizontal curves for each arc on flat terrain. Such a design ignores the effects of compound curvature and vertical alignment. This paper uses computer simulation software to establish the minimum radius requirements for compound curves, considering these effects. The actual lateral acceleration experienced by a vehicle negotiating a two-dimensional (2-D) simple curve is recorded as a base scenario to facilitate the analysis of a compound curve on a flat terrain or combined with vertical alignment (three-dimensional (3-D) compound curves). The vertical alignments examined include upgrades, downgrades, crest curves, and sag curves. Mathematical models for minimum radius requirements were developed for flat and 3-D compound curves. Three types of design vehicles were used. The results show that an increase in the minimum radius ranging from 5% to 26% is required to compensate for the effects of both compound curvature and vertical alignment.Key words: highway geometric design, compound horizontal alignments, side friction, vehicle simulation, 3-D alignments.

2003 ◽  
Vol 30 (6) ◽  
pp. 1022-1033 ◽  
Author(s):  
Said M Easa ◽  
Essam Dabbour

Current North American design guides have established mathematical relationships to calculate the minimum radius required for horizontal curves as a function of design speed, maximum superelevation, and maximum side friction. For three-dimensional (3-D) alignments, the design guides consider the alignment as two separate horizontal and vertical alignments and consequently ignore the effect of vertical alignment. This paper evaluates the effect of vertical alignment on minimum radius requirements using computer simulation, with a focus on trucks. For 3-D alignments, the results showed that existing design guidelines for minimum radius need to be increased by as much as 20% to achieve the same comfort limit on flat horizontal curves. It is interesting to note that in some cases truck rollover occurred before the side-friction comfort level is reached. This indicates the need for developing a different design control for trucks on 3-D alignments than the comfort criterion used for passenger cars on flat horizontal curves. Based on the simulation results, mathematical models for design radius requirements for passenger cars and trucks were developed.Key words: geometric design, horizontal curve radius, three-dimensional alignments, vehicle stability.


2021 ◽  
Author(s):  
Essam Mohamed S. A. E. A. Dabbour

The combination of horizontal curves with vertical alignments is commonly used in different classifications of highways; either on highway mainstream or on highway interchange ramps. The horizontal curves, combined with vertical alignments, may be single, compound or reverse horizontal curves. The current design guidelines do not adequately investigate vehicle stability on such three-dimensional (3D) alignments. Computer software that simulates vehicle behaviour on different geometrical alignments was employed to investigate vehicle stability on such 3D alignments. It was found that vehicle safety is questionable, especially for larger vehicles on reverse curves associated with vertical alignments. The critical speed, where the vehicle starts to rollover or skid, was found to be close to design speed for those 3D alignments. Design aids were then developed to address the recommended solutions to maintain the margin of safety required.


2021 ◽  
Author(s):  
Essam Mohamed S. A. E. A. Dabbour

The combination of horizontal curves with vertical alignments is commonly used in different classifications of highways; either on highway mainstream or on highway interchange ramps. The horizontal curves, combined with vertical alignments, may be single, compound or reverse horizontal curves. The current design guidelines do not adequately investigate vehicle stability on such three-dimensional (3D) alignments. Computer software that simulates vehicle behaviour on different geometrical alignments was employed to investigate vehicle stability on such 3D alignments. It was found that vehicle safety is questionable, especially for larger vehicles on reverse curves associated with vertical alignments. The critical speed, where the vehicle starts to rollover or skid, was found to be close to design speed for those 3D alignments. Design aids were then developed to address the recommended solutions to maintain the margin of safety required.


Author(s):  
Justin Madsen ◽  
Andrew Seidl ◽  
Dan Negrut

This paper discusses the terramechanics models developed to incorporate a physics-based, three dimensional deformable terrain database model with vehicle dynamics mobility simulation software. The vehicle model is contained in Chrono, a research-grade C++ based Application Programming Interface (API) that enables accurate multibody simulations. The terrain database is also contained in a C++ based API, and includes a general tire-terrain interaction model which is modular to allow for any tire model that supports the Standard Tire Interface (STI) to operate on the terrain. Furthermore, the ability to handle arbitrary, three dimensional traction element geometry allows for tracked vehicles (or vehicle hulls) to also interact with the deformable terrain. The governing equations of the terrain are based on a soil compaction model that includes both the propagation of subsoil stresses due to vehicular loads, and the resulting visco-elastic-plastic stress/strain on the affected soil volume. Non-flat, non-homogenous and non-uniform soil densities, rutting, repeated loading and strain hardening effects are all captured in the vehicle mobility response as a result of the general 3-D tire/terrain model developed. Pedo-transfer functions allow for the calculation of the soil mechanics model parameters from existing soil measurements. This terrain model runs at near real-time speed, due to parallel CPU and GPU implementation. Results that exercise the force models developed with the 3-D tire geometry are presented and discussed for a kinematically driven tire and a full vehicle simulation.


2015 ◽  
Vol 35 (3) ◽  
pp. 71-86 ◽  
Author(s):  
Krzysztof Zboiński ◽  
Piotr Woźnica

This paper represents new results obtained by its authors while searching for the proper shape of polynomial railway transition curves (TCs). The search for the proper shape means the evaluation of the curve properties based on chosen dynamical quantities and generation of such shape with use of mathematically understood optimisation methods. The studies presented now and in the past always had got a character of the numerical tests. For needs of this work advanced vehicle model, dynamical track-vehicle and vehicle-passenger interactions, and optimisation methods were exploited. In this software complete rail vehicle model of 2-axle freight car, the track discrete model, and non-linear description od wheel-rail contact are used. That part of the software, being vehicle simulation software, is combined with library optimisation procedures into the final computer programme. The main difference between this and previous papers by the authors are the degrees of examinated polynomials. Previously they tested polynomial curves of odd degrees, now they focus on TCs of 6th, 8th and 10th degrees with and without curvature and superelevation ramp tangence in the TC’s terminal points. Possibility to take account of fundamental demands (corresponding values of curvature in terminal points) concerning TC should be preserved. Results of optimisation are compared both among themselves and with 3rd degree parabola. The aim of present article is to find the polynomial TCs’ optimum shapes which are determined by the possible polynomial configurations. Only one dynamical quantities being the results of simulation of railway vehicle advanced model is exploited in the determination of quality function (QF1). This is: minimum of integral of vehicle body lateral acceleration.


Author(s):  
Y K Remya ◽  
Anitha Jacob ◽  
E A Subaida

All over the world India bangs the top most position in crash deaths. Nearly 1.2 lakh people die every year on Indian roads. Crashes involving rolloverand lateral skidding are now responsible for almost 1/3 of all highway vehicle occupant fatalities. So, rollovers and skidding are more serious than other types of crashes. One of the major reasons for such incidents is vehicle instability at curves due to its inconsistent geometric design. This necessitates a review on current design guidelines followed in India. Many researchers have pointed out drawbacks of current design approach and a few have identified various influential factors which are significant in curve design to reduce rollover and lateral skidding. When some researchers conducted field studies to measure vehicle stability at selected curves, some carried out computer simulations. There are efforts to incorporate vehicular characteristics in curve design which is much appreciable. This paper aims to project efforts made by researchers to reduce vehicle instability at horizontal curves. Moreover, gaps in these research works and scope for further research are highlighted.


2021 ◽  
Author(s):  
Muhammad Zain Abrahim Ali

Intersection sight distance(ISD) is an important design element. Each intersection has a potential for several different types of vehicular conflicts that can be greatly reduced through the provision of proper sight distance. Current guidelines do not adequately address sight distance requirements for intersections located on horizontal curves alone or horizontal curves combined with vertical alignments. In many practical situations, however, sight distance is required to be checked for an existing or proposed three-dimensional(3D) intersection alignments. In this thesis, models were developed to check sight (2001) were considered on 3D alignment: (1)Departure from stop-control minor-road and (2) Left-turns from major-road. For stop-control intersections, several cases were addressed. These include Case 1(a): Intersection and approaching vehicle (object) lie on the curve, Case 2: Intersection lies on the tangent and object lies on the curve. For both cases (1) and (2), obstruction may lie inside or outside the horizontal curve and the intersection and object can be anywhere with respect to the vertical alignment. In many practical situations, however, sight distance is required to be checked for an existing or proposed three-dimensional(3D) intersection alignments. In this thesis, models were developed to check sight (2001) were considered on 3D alignment: (1)Departure from stop-control minor-road and (2) Left-turns from major-road. For stop-control intersections, several cases were addressed. These include Case 1(a): Intersection and approaching vehicle (object) lie on the curve, Case 2: Intersection lies on the tangent and object lies on the curve. For both cases (1) and (2), obstruction may lie inside or outside the horizontal curve and the intersection and object can be anywhere with respect to the vertical alignment. Design aids for required minimum lateral clearance (from the minor and major roads) are presented for different radii of intersections located on horizontal curves, guidelines are presented for offsetting opposing left-turn lanes to provide unobstructed required sight distance. Applications of the methodologies are illustrated using numerical examples.


2021 ◽  
Author(s):  
Muhammad Zain Abrahim Ali

Intersection sight distance(ISD) is an important design element. Each intersection has a potential for several different types of vehicular conflicts that can be greatly reduced through the provision of proper sight distance. Current guidelines do not adequately address sight distance requirements for intersections located on horizontal curves alone or horizontal curves combined with vertical alignments. In many practical situations, however, sight distance is required to be checked for an existing or proposed three-dimensional(3D) intersection alignments. In this thesis, models were developed to check sight (2001) were considered on 3D alignment: (1)Departure from stop-control minor-road and (2) Left-turns from major-road. For stop-control intersections, several cases were addressed. These include Case 1(a): Intersection and approaching vehicle (object) lie on the curve, Case 2: Intersection lies on the tangent and object lies on the curve. For both cases (1) and (2), obstruction may lie inside or outside the horizontal curve and the intersection and object can be anywhere with respect to the vertical alignment. In many practical situations, however, sight distance is required to be checked for an existing or proposed three-dimensional(3D) intersection alignments. In this thesis, models were developed to check sight (2001) were considered on 3D alignment: (1)Departure from stop-control minor-road and (2) Left-turns from major-road. For stop-control intersections, several cases were addressed. These include Case 1(a): Intersection and approaching vehicle (object) lie on the curve, Case 2: Intersection lies on the tangent and object lies on the curve. For both cases (1) and (2), obstruction may lie inside or outside the horizontal curve and the intersection and object can be anywhere with respect to the vertical alignment. Design aids for required minimum lateral clearance (from the minor and major roads) are presented for different radii of intersections located on horizontal curves, guidelines are presented for offsetting opposing left-turn lanes to provide unobstructed required sight distance. Applications of the methodologies are illustrated using numerical examples.


2013 ◽  
Vol 427-429 ◽  
pp. 320-324 ◽  
Author(s):  
Zheng Yu Wang ◽  
Cheng Bing Li ◽  
Jin Xu

To control the lateral acceleration of driving vehicle and its rate of growth is always an important part in road geometric design. At present, vehicles are simplified as single rigid body when and are calculated, moreover, the calculation is made in two-dimensional plane, which does not comply with the actuality. In this article, Road-Driver-Vehicle simulation system (RDVS) is applied to get and of driving vehicle on 3 test roads selected from the mountainous area of southwestern China. In RDVS, the dynamic vehicle model is driven on three-dimensional roads under the control of driver model, so it is more close to the real driving. The results show: got from RDVS is bigger than that from single rigid body calculation. As RDVS is more reliable, from single rigid body calculation may cause an insufficient estimation: suppose the driver drives at the designed speed, though the designed speed varies, the peak value of of the three objects range in [2.0m/s2, 2.5m/s2], beyond the limit of comfort but within tolerable scope; as for subject C without application of clothoid, will exceed the limit of 1.0m/s3. So it is suggested using clothoid, considering improving the quality.


Author(s):  
Milan Paudel ◽  
Fook Fah Yap

E-scooters are a recent trend and are viewed as a sustainable solution to ease the first and last mile problem in modern transportation. However, an alarming rate of accidents, injuries, and fatalities have caused a significant setback for e-scooters. Many preventive measures and legislation have been put on the e-scooters, but the number of accidents and injuries has not reduced considerably. In this paper, the current design approach of e-scooters has been analyzed, and the most common range of design parameters have been identified. Thereafter, validated mathematical models have been used to quantify the performance of e-scooters and relate them with the safety aspects. Both standing and seated riders on e-scooters have been considered, and their influence on the dynamic performance has been analyzed and compared with the standard 26-in wheel reference safety bicycle. With more than 80% of the accidents and injuries occurring from falling or colliding with obstacles, this paper tries to correlate the dynamics of uncontrolled single-track vehicles with the safety performance of e-scooters. The self-stability, handling, and braking effect have been considered as major performance matrices. The analysis has shown that the current e-scooter designs are not as stable as the reference safety bicycle. Moreover, these e-scooters have been found unstable within the most common range of legislated riding velocity. The results corroborate with the general perception that the current designs of e-scooters are less stable, easy to lose control, twitchy, or wobbly to ride. Furthermore, the standing posture of the rider on the e-scooter has been found dangerous while braking to avoid any disturbances such as potholes or obstacles. Finally, the front steering design guidelines have been proposed to help modify the current design of e-scooters to improve the dynamic performance, hence the safety of the e-scooter riders and the surroundings.


Sign in / Sign up

Export Citation Format

Share Document