Numerical simulation of sediment transport and scouring by an offset jet

2007 ◽  
Vol 34 (10) ◽  
pp. 1267-1275 ◽  
Author(s):  
Mohammad Reza Boroomand ◽  
S. Ali Akbar Salehi Neyshabouri ◽  
Kameleh Aghajanloo

In this paper the offset jet entering a domain with a movable bed is simulated by the computer program FLUENT. To achieve this aim, sediment transport is numerically simulated using multiphase systems and the empirical coefficients are studied theoretically. The numerical results are verified by comparing the simulated total load with that obtained using existing formulae and concentration profiles from available measured data. In the final step, the offset jet scouring pattern is modeled qualitatively.Key words: offset jet, numerical simulation, FLUENT, multiphase system, turbulence, sediment, scouring.

Author(s):  
Changlu ZHOU ◽  
Akihide TADA ◽  
Shinichiro YANO ◽  
Akito MATSUYAMA ◽  
Changping CHEN

1998 ◽  
Vol 527 ◽  
Author(s):  
M. Hunkel ◽  
D. Bergner

ABSTRACTA simulation model for intrinsic diffusion of multicomponent multiphase systems is presented. The model is not restricted onto a certain number of components or phases. For simplicity, Manning's random alloy model with vanishing vacancy wind effect is used. Then the cross terms of the diffusion flux can be neglected. The simulation routine uses equations for the fluxes, the equation of continuity and an equation for the change of the thickness of volume elements due to the vacancy flux. With this model diffusions paths, concentration profiles, fluxes of the components as well as marker positions can be calculated. The shift of interfaces and the growth of new phases can also be determined. The simulation results were compared with experimental data of the Cu-Fe-Ni system. Diffusion was studied in single-phase areas and across interfaces.


2019 ◽  
Vol 71 (2) ◽  
pp. 284-294 ◽  
Author(s):  
AiHua Zhu ◽  
Si Yang ◽  
Qiang Li ◽  
JianWei Yang ◽  
Xi Li ◽  
...  

PurposeThe purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.MethodologyBy using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.FindingsThe results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.Practical implicationsThese results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.Originality/valueAt present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.


2006 ◽  
Vol 18 (S1) ◽  
pp. 201-207
Author(s):  
Ze-xuan Zhou ◽  
Peng-zhi Lin

2013 ◽  
Vol 438-439 ◽  
pp. 1427-1432
Author(s):  
Qian Xu Liao ◽  
Jin Cao ◽  
Jun Wei Tang

This paper derives a numerical simulation of direct shearing test and model pile test based on the measured data of bored piles. Characteristics of the interface between bored pile and soil around it are analyzed. Laws of the magnitude and the distribution range of point resistance and frictional resistance of the bored piles in granular and clayey soil are obtained and the mechanism on them is explained.


2012 ◽  
Vol 516-517 ◽  
pp. 917-920
Author(s):  
Xue Yao Wang ◽  
Xue Zhi Wu ◽  
Sheng Dian Wang ◽  
Xiang Xu ◽  
Yun Han Xiao

The flow character in riser is important for deep understanding the steady and high-efficient running of CFBs. In this paper, the 2D numerical simulation research for bench-scale circular cross-section riser based on EMMS methods is carried out. The solids’ transient moving profiles are captured. By analyzing the axial solids concentration profiles by simulation and experimental methods, the practicability of the EMMS model is verified.


Sign in / Sign up

Export Citation Format

Share Document