Multiple optimization and segmentation technique (MOST) for large-scale bilevel life cycle optimization

2011 ◽  
Vol 38 (3) ◽  
pp. 263-271 ◽  
Author(s):  
Tarek Hegazy ◽  
Ahmed Elhakeem

This paper introduces a new formulation for large-scale combinatorial bilevel optimization problems that involve integer, discrete, two-level decisions. The most vivid example where the new technique most applies is the life cycle optimization needed to allocate repair types and repair timings to a number of infrastructure assets (e.g., building components). Combining these decisions into a single optimization for hundreds of assets simultaneously makes the optimization problem complex and prohibitive. For such a large-scale problem, a multiple optimization and segmentation technique (MOST) is proposed to handle the optimization one level at a time through a series of small-size optimizations that can be solved easily. The performance of MOST has been validated on various problem sizes and proved to be innovative and can handle thousands of variables simultaneously.

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1938-1963 ◽  
Author(s):  
Zhe Liu ◽  
Albert C. Reynolds

Summary Solving a large-scale optimization problem with nonlinear state constraints is challenging when adjoint gradients are not available for computing the derivatives needed in the basic optimization algorithm used. Here, we present a methodology for the solution of an optimization problem with nonlinear and linear constraints, where the true gradients that cannot be computed analytically are approximated by ensemble-based stochastic gradients using an improved stochastic simplex approximate gradient (StoSAG). Our discussion is focused on the application of our procedure to waterflooding optimization where the optimization variables are the well controls and the cost function is the life-cycle net present value (NPV) of production. The optimization algorithm used for solving the constrained-optimization problem is sequential quadratic programming (SQP) with constraints enforced using the filter method. We introduce modifications to StoSAG that improve its fidelity [i.e., the improvements give a more accurate approximation to the true gradient (assumed here to equal the gradient computed with the adjoint method) than the approximation obtained using the original StoSAG algorithm]. The modifications to StoSAG vastly improve the performance of the optimization algorithm; in fact, we show that if the basic StoSAG is applied without the improvements, then the SQP might yield a highly suboptimal result for optimization problems with nonlinear state constraints. For robust optimization, each constraint should be satisfied for every reservoir model, which is highly computationally intensive. However, the computationally viable alternative of letting the reservoir simulation enforce the nonlinear state constraints using its internal heuristics yields significantly inferior results. Thus, we develop an alternative procedure for handling nonlinear state constraints, which avoids explicit enforcement of nonlinear constraints for each reservoir model yet yields results where any constraint violation for any model is extremely small.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 72
Author(s):  
Siti Farhana Husin ◽  
Mustafa Mamat ◽  
Mohd Asrul Hery Ibrahim ◽  
Mohd Rivaie

In this paper, we develop a new search direction for Steepest Descent (SD) method by replacing previous search direction from Conjugate Gradient (CG) method, , with gradient from the previous step,  for solving large-scale optimization problem. We also used one of the conjugate coefficient as a coefficient for matrix . Under some reasonable assumptions, we prove that the proposed method with exact line search satisfies descent property and possesses the globally convergent. Further, the numerical results on some unconstrained optimization problem show that the proposed algorithm is promising. 


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 377
Author(s):  
Nimit Nimana

In this work, we consider a bilevel optimization problem consisting of the minimizing sum of two convex functions in which one of them is a composition of a convex function and a nonzero linear transformation subject to the set of all feasible points represented in the form of common fixed-point sets of nonlinear operators. To find an optimal solution to the problem, we present a fixed-point subgradient splitting method and analyze convergence properties of the proposed method provided that some additional assumptions are imposed. We investigate the solving of some well known problems by using the proposed method. Finally, we present some numerical experiments for showing the effectiveness of the obtained theoretical result.


2000 ◽  
Vol 7 (5) ◽  
pp. 321-332 ◽  
Author(s):  
Z. Zong ◽  
K.Y. Lam ◽  
Tessa Gan

Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm) is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.


2021 ◽  
Author(s):  
Xin-long Luo ◽  
Hang Xiao

Abstract The global minimum point of an optimization problem is of interest in engineering fields and it is difficult to be solved, especially for a nonconvex large-scale optimization problem. In this article, we consider the continuation Newton method with the deflation technique and the quasi-genetic evolution for this problem. Firstly, we use the continuation Newton method with the deflation technique to find the stationary points from several determined initial points as many as possible. Then, we use those found stationary points as the initial evolutionary seeds of the quasi-genetic algorithm. After it evolves into several generations, we obtain a suboptimal point of the optimization problem. Finally, we use the continuation Newton method with this suboptimal point as the initial point to obtain the stationary point, and output the minimizer between this final stationary point and the found suboptimal point of the quasi-genetic algorithm. Finally, we compare it with the multi-start method (the built-in subroutine GlobalSearch.m of the MATLAB R2020a environment) and the differential evolution algorithm (the DE method, the subroutine de.m of the MATLAB Central File Exchange 2021), respectively. Numerical results show that the proposed method performs well for the large-scale global optimization problems, especially the problems of which are difficult to be solved by the known global optimization methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmad Alhawarat ◽  
Thoi Trung Nguyen ◽  
Ramadan Sabra ◽  
Zabidin Salleh

To find a solution of unconstrained optimization problems, we normally use a conjugate gradient (CG) method since it does not cost memory or storage of second derivative like Newton’s method or Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Recently, a new modification of Polak and Ribiere method was proposed with new restart condition to give a so-call AZPRP method. In this paper, we propose a new modification of AZPRP CG method to solve large-scale unconstrained optimization problems based on a modification of restart condition. The new parameter satisfies the descent property and the global convergence analysis with the strong Wolfe-Powell line search. The numerical results prove that the new CG method is strongly aggressive compared with CG_Descent method. The comparisons are made under a set of more than 140 standard functions from the CUTEst library. The comparison includes number of iterations and CPU time.


Games ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 88
Author(s):  
Eduardo Mojica-Nava ◽  
Fredy Ruiz

Hierarchical decision-making processes traditionally modeled as bilevel optimization problems are widespread in modern engineering and social systems. In this work, we deal with a leader with a population of followers in a hierarchical order of play. In general, this problem can be modeled as a leader–follower Stackelberg equilibrium problem using a mathematical program with equilibrium constraints. We propose two interconnected dynamical systems to dynamically solve a bilevel optimization problem between a leader and follower population in a single time scale by a predictive-sensitivity conditioning interconnection. For the leader’s optimization problem, we developed a gradient descent algorithm based on the total derivative, and for the followers’ optimization problem, we used the population dynamics framework to model a population of interacting strategic agents. We extended the concept of the Stackelberg population equilibrium to the differential Stackelberg population equilibrium for population dynamics. Theoretical guarantees for the stability of the proposed Stackelberg population learning dynamics are presented. Finally, a distributed energy resource coordination problem is solved via pricing dynamics based on the proposed approach. Some simulation experiments are presented to illustrate the effectiveness of the framework.


Author(s):  
Mohamed E. M. El-Sayed ◽  
T. S. Jang

Abstract This paper presents a method for solving large scale structural optimization problems using linear goal programming techniques. The method can be used as a multicriteria optimization tool since goal programming removes the difficulty of having to define an objective function and constraints. It also has the capacity of handling rank ordered design objectives or goals. The method uses finite element analysis, linear goal programming techniques and successive linearization to obtain the solution for the nonlinear goal optimization problems. The general formulation of the structural optimization problem into a nonlinear goal programming form is presented. The successive linearization method for the nonlinear goal optimization problem is discussed. To demonstrate the validity of the method, as a design tool, the solution of the minimum weight structural optimization problem with stress constraints for 10, 25 and 200 truss problems are included.


SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 191-199 ◽  
Author(s):  
G.M.. M. van Essen ◽  
P.M.J.. M.J. Van den Hof ◽  
J.D.. D. Jansen

Summary Model-based dynamic optimization of oil production has a significant potential to improve economic life-cycle performance, as has been shown in various studies. However, within these studies, short-term operational objectives are generally neglected. As a result, the optimized injection and production rates often result in a considerable decrease in short-term production performance. In reality, however, it is often these short-term objectives that dictate the course of the operational strategy. Incorporating short-term goals into the life-cycle optimization problem, therefore, is an essential step in model-based life-cycle optimization. We propose a hierarchical optimization structure with multiple objectives. Within this framework, the life-cycle performance in terms of net present value (NPV) serves as the primary objective and shortterm operational performance is the secondary objective, such that optimality of the primary objective constrains the secondary optimization problem. This requires that optimality of the primary objective does not fix all degrees of freedom (DOF) of the decision variable space. Fortunately, the life-cycle optimization problem is generally ill-posed and contains many more decision variables than necessary. We present a method that identifies the redundant DOF in the life-cycle optimization problem, which can subsequently be used in the secondary optimization problem. In our study, we used a 3D reservoir in a fluvial depositional environment with a production life of 7 years. The primary objective is undiscounted NPV, while the secondary objective is aimed at maximizing shortterm production. The optimal life-cycle waterflooding strategy that includes short-term performance is compared to the optimal strategy that disregards short-term performance. The experiment shows a very large increase in short-term production, boosting first-year production by a factor of 2, without significantly compromising optimality of the primary objective, showing a slight drop in NPV of only -0.3%. Our method to determine the redundant DOF in the primary objective function relies on the computation of the Hessian matrix of the objective function with respect to the control variables. Although theoretically rigorous, this method is computationally infeasible for realistically sized problems. Therefore, we also developed a second, more pragmatic, method relying on an alternating sequence of optimizing the primary-and secondary-objective functions. Subsequently, we demonstrated that both methods lead to nearly identical results, which offers scope for application of hierarchical long-term and short-term production optimization to realistically sized flooding-optimization problems.


2012 ◽  
Vol 236-237 ◽  
pp. 1190-1194
Author(s):  
Wen Hua Han ◽  
Xu Chen ◽  
Jun Xu

This paper proposed a cooperative coevolving particle swarm optimization base on principal component analysis (PCA-CCPSO) algorithm for large-scale and complex problem. In this algorithm, PCA are used to pick up the available particles which gathered the important information of the initialized particles for CCPSO. The Cauchy and Gaussian distributions are used to update the position of the particles and the coevolving subcomponent size of the particles is determined dynamically. The experimental results demonstrate that the convergence speed of PCA-CCPSO is faster than that of CCPSO in solving the large-scale and complex multimodal optimization problems.


Sign in / Sign up

Export Citation Format

Share Document