Colmatage naturel d'un milieu filtrant par les particules en suspension dans l'eau

1979 ◽  
Vol 6 (2) ◽  
pp. 243-252
Author(s):  
Marcel Frenette ◽  
Conrad Anctil

This paper contains a general study on the natural clogging of porous media by suspended sediment in water. This creates with time a decrease in the permeability coefficient and consequently a reduction of the seepage flow.Two theories are presented and compared for the prediction of the rate of clogging in nature. The two approaches have been verified by experimental data obtained from tests carried out at Laval University. Results have permitted the limits of application of each method to be denned.

2013 ◽  
Vol 58 (3) ◽  
pp. 691-704 ◽  
Author(s):  
A.B. Kuljabekov ◽  
M.K Inkarbekov ◽  
M.S. Tungatarova ◽  
K.A. Alibayeva ◽  
A. Kaltayev

Abstract In this work the numerical study of the hydrodynamic efficiency of the multistage filters setting technology is carried out on the basis of mathematical simulation. Obtained results of a flow of solution in porous media near a wellbore qualitatively conform to the experimental data. In calculations the well is considered as the high-permeability channel with the fictitious permeability coefficient depending on a filter construction (porosity, form of perforations). The results of calculation show that the fictitious permeability coefficient has deep influence on the fluid influx to the well and the distribution of flow rate on well height is not uniform. The developed model is used for the axisymmetric case. Calculations were carried out for a single well; however it can be easily applied to solve the 3D problem with various sets of wells.


2017 ◽  
Vol 53 (1) ◽  
pp. 199-221 ◽  
Author(s):  
Abdullah Cihan ◽  
Jens Birkholzer ◽  
Luca Trevisan ◽  
Ana Gonzalez-Nicolas ◽  
Tissa Illangasekare

REAKTOR ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
L. Buchori ◽  
Y. Bindar ◽  
D. Sasongko ◽  
IGBN Makertihartha

Generally, the momentum equation of fluid flow in porous media was solved by neglecting the terms of diffusion and convection such as Ergun, Darcy, Brinkman and Forchheimer models. Their model primarily applied for laminar flow. It is true that these model are limited to condition whether the models can be applied. Analytical solution for the model type above is available only for simple one-dimensional cases. For two or three-dimentional problem, numerical solution is the only solution. This work advances the flow model in porous media and provide two-dimentional flow field solution in porous media, which includes the diffusion and convection terms. The momentum lost due to flow and porous material interaction is modeled using the available  Brinkman-Forchheimer equation. The numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid  flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction in porous  media is the basic principle of the flow model in morous media. The Brinkman-Forchheimer consider the momentum lost term to be determined by a quadratic function of the velocity component. The momentum and the continuity equation are solved for two-dimentional cylindrical coordinat . the result were validated with the experimental data. The velocity of the porous media was treated to be radially oscillated. The result of velocity profile inside packing show a good agreement in their trend with the Stephenson and Steward experimental data. The local superficial  velocity attains its global maximum and minimum at distances near 0.201 and 0.57 particle diameter, dp. velocity profile below packing was simulated. The result were validated with Schwartz and Smith experimental data. The result also show an excellent agreement with those experimental data.Keywords : finite volume method, porous media, flow distribution, velocity profile


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050002
Author(s):  
KE CHEN ◽  
HE CHEN ◽  
PENG XU

The multiphase flow through unsaturated porous media and accurate estimation of relative permeability are significant for oil and gas reservoir, grounder water resource and chemical engineering, etc. A new fractal model is developed for the multiphase flow through unsaturated porous media, where multiscale pore structure is characterized by fractal scaling law and the trapped water in the pores is taken into account. And the analytical expression for relative permeability is derived accordingly. The relationships between the relative permeability and capillary head as well as saturation are determined. The proposed model is validated by comparison with 14 sets of experimental data, which indicates that the fractal model agrees well with experimental data. It has been found that the proposed fractal model shows evident advantages compared with BC-B model and VG-M model, especially for the porous media with fine content and texture. Further calculations show that water permeability decreases as the fractal dimension increases under fixed saturation because the cumulative volume fraction of small pores increases with the increment of the fractal dimension. The present fractal model for the relative permeability may be helpful to understand the multiphase flow through unsaturated porous media.


Author(s):  
Qiang Wang ◽  
Ya-Ping Hu ◽  
Hong-Hu Ji

Finger seal is a new type of compliant seal configuration, which is an important part of an aero-engine and its accessory systems. It has superior sealing performance compared with conventional labyrinth seals and a lower manufacturing cost than brush seals. However, numerical simulation of the leakage characteristics of an entitative finger seal structure are very difficult to implement, because the finger laminates are in close contact with one another and the radial deformation of the fingers caused by interference between seal and rotor as well as the centrifugal and thermal expansion of the rotor can change the geometric structure of seal. The published leakage analysis models of finger seal ignore the leakage throughout the interstices between fingers or finger laminates. In view of this, the authors propose an anisotropic porous media model for leakage analysis of finger seal. The model considers the effects of the seal structure parameters, upstream and downstream axial pressure differences and the fit status between seal and rotor. First, the equations of the model and their parameters were obtained by theoretical derivations, while the correction factors were determined based on experiment leakage data in the literature. Second, the accuracy of the model was validated by calculating the leakage of a known seal structure in the literature and comparing these results with the experimental data. At last, a comparison between the anisotropic and isotropic porous media model is carried out. The results of the validation examples show that the model can simulate the leakage of finger seal very well with the errors between numerical results and experimental data are less than 10% for two-thirds of the data points.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. E297-E309 ◽  
Author(s):  
Qifei Niu ◽  
Manika Prasad ◽  
André Revil ◽  
Milad Saidian

Induced polarization (IP) has been broadly used for environmental and hydrogeological applications and in civil engineering. The IP response of a porous medium without metallic particles (described by its quadrature conductivity or its normalized chargeability) is controlled by the interfacial electrochemistry of the electrical double layer and the pore-space geometry. We use the specific surface per unit pore volume normalized by the formation factor (i.e., [Formula: see text]) as the controlling textural parameter for the quadrature conductivity. This relationship is obtained by averaging the surface conductance over the pore volume. A database that contains 76 samples (including porous borosilicate glass, sandstones, and clayey sediments) is used to check the new scaling. In addition to these data, we have conducted new IP measurements on 13 samples from the Middle Bakken Formation corresponding to low-porosity clayey materials. Comparison between the experimental data and our model confirms that the ratio [Formula: see text] is the dominant textural parameter describing the quadrature conductivity [Formula: see text] of a broad range of porous media. The database was also used to test whether the quadrature conductivity depended either on [Formula: see text], or the specific surface area [Formula: see text], or the ratio [Formula: see text] ([Formula: see text] being the connected porosity). Although the quadrature conductivity scales with [Formula: see text] and [Formula: see text] for high-porosity sandstones, these relationships are not appropriate for the low-porosity clayey materials presented in this study. However, experimental data support the dependence of the quadrature conductivity on [Formula: see text], a published relationship obtained through the volume averaging approach.


2016 ◽  
Vol 305 ◽  
pp. 678-687 ◽  
Author(s):  
J. Baggemann ◽  
D. Shi ◽  
S. Kasselmann ◽  
S. Kelm ◽  
H.-J. Allelein ◽  
...  

Fractals ◽  
2016 ◽  
Vol 24 (03) ◽  
pp. 1650034 ◽  
Author(s):  
SHIFANG WANG ◽  
TAO WU ◽  
YONGJU DENG ◽  
QIUSHA ZHENG ◽  
QIAN ZHENG

Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging–diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging–diverging effect included is in good agreement with reported experimental data.


1959 ◽  
Vol 37 (4) ◽  
pp. 413-416 ◽  
Author(s):  
William Woodside

Following the analogy between the laws of heat conduction and vapor diffusion, two theoretical expressions for the thermal conductivity of a composite medium are applied to the water vapor permeability coefficient of certain porous media. It is shown that both expressions reduce to a form very similar to the empirical relationships found by Penman and Edenholm for soils, glass spheres, charcoal, and cellular concrete. The calculation of the variation of water vapor permeability with density for a cellular lightweight concrete is illustrated.


Sign in / Sign up

Export Citation Format

Share Document