Reduction of cavitation on spillways by induced air entrainment

1991 ◽  
Vol 18 (3) ◽  
pp. 358-377 ◽  
Author(s):  
James A. Kells ◽  
C. D. Smith

Spillways for medium and high head dams may be exposed to high velocity flows and the associated destructive phenomenon of cavitation. Cavitation may occur at rough spots in the surface of the chute or tunnel, at local discontinuities in the finished surface such as construction joints, and at locations along critical flow profiles having significant deviations from design specifications. This paper addresses, on the basis of a review of the literature, a method for preventing or reducing cavitation damage on spillways through the use of spillway aerators. While the ability of induced or forced aeration to reduce or eliminate cavitation has been known for many years, it is only in relatively recent times that the aeration mechanism has been used to this advantage on spillways subject to high velocity flow. The recent application of aerators to spillway design is related, in part, to the trend toward higher head dams and larger design unit discharge rates. Design considerations and criteria for spillway aerators are presented in the paper, and the use of physical hydraulic models to make determinations of aerator performance is discussed. The intent of the paper is to provide a document with sufficient detail and scope to be useful as a first resource for spillway design practitioners. Key words: aerator design, air entrainment, cavitation, design criteria, high dam, model – prototype comparison, physical hydraulic model, spillway, spillway aeration.

1974 ◽  
Vol 1 (1) ◽  
pp. 97-107 ◽  
Author(s):  
S. O. Russell ◽  
G. J. Sheehan

When water flows at high velocity over a surface, quite small boundary irregularities may trigger cavitation which can, in turn, cause extensive damage. Concrete surfaces downstream from high head outlet gates are particularly vulnerable to cavitation damage.Operating experience and previous experimental work suggest that cavitation damage can be greatly reduced and, in some cases, eliminated by entrained air in the water.Experiments were carried out with a special high head test facility in Vancouver to obtain additional data on the effect of air entrainment. These tests confirmed its effectiveness. In this paper, previous evidence is reviewed, the experiments are described, and the results presented. Finally suggestions are made about the design of hydraulic structures which involve high velocity flow.


1994 ◽  
Vol 21 (3) ◽  
pp. 404-409 ◽  
Author(s):  
Hubert Chanson

Aeration devices are introduced along chute spillways and at bottom outlets to prevent cavitation damage in high velocity flows. Bottom aerators are characterized by large quantities of air entrained along the jet interfaces and also by a strong deaeration process near the impact of the water jet with the spillway bottom. In this paper, the aeration and deaeration occurring respectively in the aeration region and in the impact region are reviewed. A reanalysis of air concentration data obtained on models provides information on the flow characteristics at the end of the impact region. These results enable an accurate initialization of the downstream flow calculations using the method developed by Chanson. Key words: bottom aeration devices, aerators, spillways, air entrainment, detrainment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Cihan Aydin ◽  
Ercan Isik ◽  
A. Emre Ulu

AbstractDue to high flow velocity, the spillway surfaces of high-head dams can expose to cavitational damage. The most effective and economical method of protection from this damage is aerated to flow using aerators. In this study, a spillway aerator of the roller-compacted concrete dam of 100 m height was analyzed using two-phase computational fluid dynamic model to overcome the cavitation damage on the spillway surface. The numerical analysis with prototype dimensions was performed for various flow conditions (5223, 3500, 1750 and 1000 m3/s of flow rate), and obtained results were compared with some experimental observation in the literature. Numerical and experimental results indicated that the cavitation occurs on the surface after a certain downstream point based on cavitation indices. The air entrainment rate and air concentrations supplied by means of the aerator were determined to avoid the cavitational damage. While the experimental results can contain considerable scale effect in terms of air entrainment rate owing to, e.g., viscous effects especially for small scales, the numerical models with prototype dimensions gave much more accurate results. In other words, it can be also mentioned that the actual aeration amount is much greater than that obtained from the model experiments. The results based on numerical analysis showed that the aerator device meet air demand to prevent the cavitation damage.


1994 ◽  
Vol 4 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Nobuyuki Yatsuyanagi ◽  
Hiroshi Sakamoto ◽  
Kazuo Sato

2017 ◽  
Vol 48 (4) ◽  
pp. 341-355
Author(s):  
Vyacheslav Afanasievich Vinogradov ◽  
Natalya Valeryevna Guryleva ◽  
Mikhail Anatolyevich Ivan'kin ◽  
Vladimir Alekseevich Stepanov

2018 ◽  
Vol 120 (6) ◽  
pp. 3246-3256 ◽  
Author(s):  
Spencer A. Murphy ◽  
Francesco Negro ◽  
Dario Farina ◽  
Tanya Onushko ◽  
Matthew Durand ◽  
...  

Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.


Sign in / Sign up

Export Citation Format

Share Document