Micro-fiber reinforced cement composites. II. Flexural response and fracture studies

1995 ◽  
Vol 22 (4) ◽  
pp. 668-682
Author(s):  
N. Banthia ◽  
J. Sheng

In Part I of this paper, stress–strain curves for micro-fiber reinforced cement-based composites containing high volume fractions of carbon, steel, and polypropylene fibers were obtained. Considerable strengthening, toughening, and stiffening of the host matrix due to micro-fiber reinforcement under both static and impact conditions were reported. In this paper, composites are characterized under an applied flexural load. Both notched and unnotched specimens were tested in four-point flexure; significant improvements in the flexural behavior due to fiber reinforcement were noted. Notched specimens were tested to study the growth of cracks in these composites and to develop a valid fracture criterion. With this objective, crack growth resistance curves and crack opening resistance curves in terms of the stress intensity factor were constructed. The paper recognizes the potential of these composites in various applications and stresses the need for further research. Key words: Portland cement-based materials, fiber reinforcement, fracture toughness, R-curves.

Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 56
Author(s):  
Enzo Martinelli ◽  
Marco Pepe ◽  
Fernando Fraternali

This study presents a non-linear cracked-hinge model for the post-cracking response of fiber-reinforced cementitious composites loaded in bending. The proposed displacement-based model follows a meso-mechanical approach, which makes it possible to consider explicitly the random distribution and orientation of the reinforcing fibers. Moreover, the model allows for considering two different fiber typologies whereas the cement matrix is modelled as a homogeneous material. The proposed mechanical model combines a fracture-based, stress-crack opening relationship for the cementitious matrix with generalized laws aimed to capture the crack-bridging effect played by the reinforcing fibers. These laws are derived by considering both the fiber-to-matrix bond mechanism and fiber anchoring action possibly due to hooked ends. The paper includes a numerical implementation of the proposed theory, which is validated against experimental results dealing with fiber-reinforced cement composites reinforced with different short fibers. The excellent theory vs. experiment matching demonstrates the high technical potential of the presented model, obtained at a reasonable computational cost.


1994 ◽  
Vol 21 (6) ◽  
pp. 999-1011 ◽  
Author(s):  
N. Banthia ◽  
A. Moncef ◽  
K. Chokri ◽  
J. Sheng

Stress–strain curves in uniaxial tension were obtained for micro-fiber reinforced cement composites reinforced with high volume fractions of carbon, steel, and polypropylene fibers both in the mono and hybrid (combination) forms. Considerable strengthening, toughening, and stiffening of the host matrix due to micro-fiber reinforcement was observed. In the hybrid fiber composites, different fibers appear to act as additive phases, i.e., they maintain their individual reinforcing capabilities. The composites were also impact tested in uniaxial tension using a newly designed instrumented impact machine. When compared with static test results, considerable sensitivity to stress-rate was noted; composites were found to be stronger and tougher under impact and the improvements were more pronounced at higher fiber volume fractions. The paper recognizes the potential of these composites for use in thin sheet products and other similar applications, and stresses the need for continued research. In Part II of this paper, these composites will be characterized under an applied flexural load and a fracture criterion will be developed through crack growth tests. Key words: fiber reinforced cements, tension, strength, ductility, impact.


2008 ◽  
Vol 6 (2) ◽  
pp. 165-172
Author(s):  
Dragica Jevtic ◽  
Dimitrije Zakic ◽  
Aleksandar Savic

This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength) were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.


Carbon Trends ◽  
2021 ◽  
Vol 3 ◽  
pp. 100030
Author(s):  
Jin Hee Kim ◽  
Jong Hun Han ◽  
Seungki Hong ◽  
Doo-Won Kim ◽  
Sang Hee Park ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.


2005 ◽  
Vol 35 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Yiping Ma ◽  
Beirong Zhu ◽  
Muhua Tan

Sign in / Sign up

Export Citation Format

Share Document