OXIDATION OF INORGANIC SULFUR COMPOUNDS BY WASHED CELL SUSPENSIONS OF THIOBACILLUS FERROOXIDANS

1966 ◽  
Vol 12 (5) ◽  
pp. 957-964 ◽  
Author(s):  
J. Landesman ◽  
D. W. Duncan ◽  
C. C. Walden

Oxidation of various inorganic sulfur compounds by Thiobacillus ferrooxidans was studied, and conditions necessary for maximum respiration rates were established. Optimum oxidation of elemental sulfur occurred at pH 5.0 and gave a Qo2(N) of 726; oxidation of thiosulfate gave a maximum Qo2(N) of 514 at pH 4.0; tetra- and tri-thionate, when oxidized at pH 6.0, gave a maximum Qo2(N) of 103 and 113, respectively. Polythionates accumulated during thiosulfate oxidation, but did not during oxidation of elemental sulfur. Metallic sulfide minerals were oxidized optimally as follows: chalcopyrite, pH 2.0, maximum Qo2(N) 3200; bornite, pH 3.0, maximum Qo2(N) 450; pyrite, pH 2.0, maximum Qo2(N) 1600. Maximum temperature for oxidation of all inorganic sulfur compounds tested was 40 C.The effect of a variety of organic compounds on sulfur oxidation is presented.T. ferrooxidans requires growth adaptation on iron for maximum respiration on that substrate; however, sulfur oxidation is not inducible. Iron and sulfur can be oxidized simultaneously, giving a rate equal to the sum of the maximum rates of oxidation of the two substrates individually.

1988 ◽  
Vol 150 (6) ◽  
pp. 574-579 ◽  
Author(s):  
W. Hazeu ◽  
W. H. Batenburg-van der Vegte ◽  
P. Bos ◽  
R. K. van der Pas ◽  
J. G. Kuenen

2009 ◽  
Vol 75 (16) ◽  
pp. 5209-5217 ◽  
Author(s):  
Justin L. Burns ◽  
Thomas J. DiChristina

ABSTRACT Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3 2−), thiosulfate (S2O3 2−), tetrathionate (S4O6 2−), and elemental sulfur (S0). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S0 and S2O3 2− respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S0 and S2O3 2− yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S0 or S2O3 2− as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3 2− terminal reductase whose end products (sulfide [HS−] or SO3 2−) participate in an intraspecies sulfur cycle that drives S0 respiration.


1999 ◽  
Vol 45 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Isamu Suzuki

Microbial oxidation of inorganic sulfur compounds is governed by both chemical and enzymatic reactions. It is therefore essential to understand reactions possible in chemistry when we consider enzymatic reactions. Various oxidation states of sulfur atoms in inorganic sulfur compounds and chemical oxidation reactions as well as nucleophilic cleavage of sulfur-sulfur bonds are discussed. The scheme of enzymatic oxidation of sulfur compounds with S2-→> S0→> SO32-→> SO42-as the main oxidation pathway is discussed with thiosulfate and polythionates leading into the main pathway for complete oxidation to sulfate. Enzymatic reactions are related to chemical reactions and the use of inhibitors for S0→> SO32-and SO32-→> SO42-is discussed for analyzing and establishing reaction stoichiometries. The proposed pathway is supported by a variety of evidence in many different microorganisms including some genetic evidence if the oxidation steps include all the systems irrespective of oxidizing agents (O2, Fe3+, cytochromes etc.).Key words: sulfur, oxidation, chemical, enzymatic, reactions.


2017 ◽  
Vol 5 (25) ◽  
Author(s):  
Ya-long Ma ◽  
Jin-lan Xia ◽  
Yun Yang ◽  
Zhen-yuan Nie ◽  
Hong-chang Liu ◽  
...  

ABSTRACT The complete genome of Acidianus manzaensis YN-25 consists of a chromosome of 2,687,463 bp, with a G+C content of 30.62% and 2,746 coding DNA sequences. This archaeon contains a series of specific genes involved in the oxidation of elemental sulfur and reduced inorganic sulfur compounds.


1976 ◽  
Vol 22 (5) ◽  
pp. 719-730 ◽  
Author(s):  
Jon H. Tuttle ◽  
Patrick R. Dugan

Iron and sulfur oxidation by Thiobacillus ferrooxidans as well as growth on ferrous iron were inhibited by a variety of low molecular weight organic compounds. The influences of chemical structure of the organic inhibitors, pH, temperature, physical treatment of cells, and added inhibitory or stimulatory inorganic ions and iron oxidation suggest that a major factor contributing to the inhibitory effects on iron oxidation is the relative electronegativity of the organic molecule. The data also suggest that inhibitory organic compounds may (i) directly affect the iron-oxidizing enzyme system, (ii) react abiologically with ferrous iron outside the cell, (iii) interfere with the roles of phosphate and sulfate in iron oxidation, and (iv) nonselectively disrupt the cell envelope or membrane.


2001 ◽  
Vol 47 (4) ◽  
pp. 348-358 ◽  
Author(s):  
Rosemarie Jefferey Y Masau ◽  
Jae Key Oh ◽  
Isamu Suzuki

Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, ΔµH+, required either for electron transfer from cytochrome c to b or for sulfite binding.Key words: Thiobacillus thiooxidans, thiosulfate, oxidation, sulfite.


1970 ◽  
Vol 16 (9) ◽  
pp. 845-849 ◽  
Author(s):  
Marvin Silver

The characteristics of growth of Ferrobacillus ferrooxidans on elemental sulfur are reported. This organism is not able to oxidize thiocyanate, but can oxidize elemental sulfur, sulfite, dithionite, thiosulfate, tetrathionate, and sulfide. Sulfide is only partially oxidized. All compounds that can be oxidized support CO2 fixation.


2007 ◽  
Vol 20-21 ◽  
pp. 583-583 ◽  
Author(s):  
Thore Rohwerder ◽  
Claudia Janosch ◽  
Wolfgang Sand

The alpha-proteobacterial genus Acidiphilium consists of several acidophilic species, generally known as a part of the mesophilc microbial flora of leaching biotopes. All of them can grow chemoorganotrophically on carbon sources like sugars and many express additional photosynthetic pigments. Thus far, only Ap. acidophilum is known to be capable of chemolithotrophic growth on elemental sulfur oxidation. The oxidation potential of inorganic sulfur species by the other strictly heterotrophic species has not yet been thoroughly investigated. Here, we demonstrate the unequivocal evidence of inorganic sulfur compound oxidation by strains of Ap. cryptum and other Acidiphilium species. Evolutionary and biochemical aspects of this new feature among the heterotrophic Acidiphilium spp. are discussed. This finding will possibly help to solve the long-standing question about the biochemical nature of elemental sulfur oxidation in mesophilic leaching bacteria.


Sign in / Sign up

Export Citation Format

Share Document