Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans

2001 ◽  
Vol 47 (4) ◽  
pp. 348-358 ◽  
Author(s):  
Rosemarie Jefferey Y Masau ◽  
Jae Key Oh ◽  
Isamu Suzuki

Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, ΔµH+, required either for electron transfer from cytochrome c to b or for sulfite binding.Key words: Thiobacillus thiooxidans, thiosulfate, oxidation, sulfite.

1966 ◽  
Vol 12 (5) ◽  
pp. 957-964 ◽  
Author(s):  
J. Landesman ◽  
D. W. Duncan ◽  
C. C. Walden

Oxidation of various inorganic sulfur compounds by Thiobacillus ferrooxidans was studied, and conditions necessary for maximum respiration rates were established. Optimum oxidation of elemental sulfur occurred at pH 5.0 and gave a Qo2(N) of 726; oxidation of thiosulfate gave a maximum Qo2(N) of 514 at pH 4.0; tetra- and tri-thionate, when oxidized at pH 6.0, gave a maximum Qo2(N) of 103 and 113, respectively. Polythionates accumulated during thiosulfate oxidation, but did not during oxidation of elemental sulfur. Metallic sulfide minerals were oxidized optimally as follows: chalcopyrite, pH 2.0, maximum Qo2(N) 3200; bornite, pH 3.0, maximum Qo2(N) 450; pyrite, pH 2.0, maximum Qo2(N) 1600. Maximum temperature for oxidation of all inorganic sulfur compounds tested was 40 C.The effect of a variety of organic compounds on sulfur oxidation is presented.T. ferrooxidans requires growth adaptation on iron for maximum respiration on that substrate; however, sulfur oxidation is not inducible. Iron and sulfur can be oxidized simultaneously, giving a rate equal to the sum of the maximum rates of oxidation of the two substrates individually.


1999 ◽  
Vol 45 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Isamu Suzuki

Microbial oxidation of inorganic sulfur compounds is governed by both chemical and enzymatic reactions. It is therefore essential to understand reactions possible in chemistry when we consider enzymatic reactions. Various oxidation states of sulfur atoms in inorganic sulfur compounds and chemical oxidation reactions as well as nucleophilic cleavage of sulfur-sulfur bonds are discussed. The scheme of enzymatic oxidation of sulfur compounds with S2-→> S0→> SO32-→> SO42-as the main oxidation pathway is discussed with thiosulfate and polythionates leading into the main pathway for complete oxidation to sulfate. Enzymatic reactions are related to chemical reactions and the use of inhibitors for S0→> SO32-and SO32-→> SO42-is discussed for analyzing and establishing reaction stoichiometries. The proposed pathway is supported by a variety of evidence in many different microorganisms including some genetic evidence if the oxidation steps include all the systems irrespective of oxidizing agents (O2, Fe3+, cytochromes etc.).Key words: sulfur, oxidation, chemical, enzymatic, reactions.


1942 ◽  
Vol 26 (1) ◽  
pp. 89-102 ◽  
Author(s):  
K. G. Vogler ◽  
G. A. LePage ◽  
W. W. Umbreit

The data of this paper indicate that: 1. The "energy of activation" (µ) of sulfur oxidation by the autotrophic bacterium, Thiobacillus thiooxidans, is similar to that of other respirations. 2. The pH of the menstruum does not influence the respiration on sulfur between the limits of pH 2 to 4.8 once contact between the bacterial cell and the sulfur particle has been established but it does influence the rate at which such contact occurs. 3. The pO2 has little effect upon the respiration of this organism. 4. Most organic materials have no detectable effect upon the respiration of Thiobacillus thiooxidans, but the organic acids of terminal respiration seem to stimulate the respiration in the absence of oxidizable sulfur and certain of them inhibit sulfur oxidation. 5. In so far as inhibitor studies on intact cells are trustworthy, sulfur oxidation goes through iron-containing systems similar to cytochrome. It is possible that the oxygen contained in the sulfuric acid formed during sulfur oxidation is derived from the oxygen of the water.


1999 ◽  
Vol 190 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Botond Bánfi ◽  
Jacques Schrenzel ◽  
Oliver Nüsse ◽  
Daniel P. Lew ◽  
Erzsébet Ligeti ◽  
...  

Efficient mechanisms of H+ ion extrusion are crucial for normal NADPH oxidase function. However, whether the NADPH oxidase—in analogy with mitochondrial cytochromes—has an inherent H+ channel activity remains uncertain: electrophysiological studies did not find altered H+ currents in cells from patients with chronic granulomatous disease (CGD), challenging earlier reports in intact cells. In this study, we describe the presence of two different types of H+ currents in human eosinophils. The “classical” H+ current had properties similar to previously described H+ conductances and was present in CGD cells. In contrast, the “novel” type of H+ current had not been described previously and displayed unique properties: (a) it was absent in cells from gp91- or p47-deficient CGD patients; (b) it was only observed under experimental conditions that allowed NADPH oxidase activation; (c) because of its low threshold of voltage activation, it allowed proton influx and cytosolic acidification; (d) it activated faster and deactivated with slower and distinct kinetics than the classical H+ currents; and (e) it was ∼20-fold more sensitive to Zn2+ and was blocked by the histidine-reactive agent, diethylpyrocarbonate (DEPC). In summary, our results demonstrate that the NADPH oxidase or a closely associated protein provides a novel type of H+ conductance during phagocyte activation. The unique properties of this conductance suggest that its physiological function is not restricted to H+ extrusion and repolarization, but might include depolarization, pH-dependent signal termination, and determination of the phagosomal pH set point.


1985 ◽  
Vol 74 (1) ◽  
pp. 219-237
Author(s):  
C.L. Lachney ◽  
T.A. Lonergan

The role of cytoplasmic microtubules in a recently reported biological clock-controlled rhythm in cell shape of the alga Euglena gracilis (strain Z) was examined using indirect immunofluorescence microscopy. The resulting fluorescent patterns indicated that, unlike many other cell systems, Euglena cells apparently change from round to long to round cell shape without associated cytoplasmic microtubule assembly and disassembly. Instead, the different cell shapes were correlated with microtubule patterns, which suggested that movement of stable microtubules to accomplish cell shape changes. In live intact cells, these microtubules were demonstrated by immunofluorescence to be stable to lowered temperature and elevated intracellular Ca2+ levels, treatments that are commonly used to depolymerize microtubules. In cells extracted in detergent at low temperature or in the presence of elevated Ca2+ levels, the fluorescent image of the microtubules was disrupted. Transmission electron microscopy confirmed the loss of one subset of pellicle microtubules. The difference in microtubule stability to these agents between live intact cells and cells extracted in detergent suggested the presence of a microtubule-stabilizing factor in live cells, which is released from the cell by extraction with detergent, thereby permitting microtubule depolymerization by Ca2+ or lowered temperature. The calmodulin antagonist trifluoperazine prevented the Ca2+-induced disruption of the fluorescent microtubule pattern in cells extracted in detergent. These results implied the involvement of calmodulin in the sensitivity to Ca2+ of the microtubules of cells extracted in detergent.


Sign in / Sign up

Export Citation Format

Share Document