METABOLISM OF LEPTOSPIRES: II. THE ACTION OF 8-AZAGUANINE

1967 ◽  
Vol 13 (12) ◽  
pp. 1621-1629 ◽  
Author(s):  
Russell C. Johnson ◽  
Palmer Rogers

Both the pathogen Leptospira pomona and the saprophyte L. biflexa Patoc I can convert exogenous adenine, guanine, and 8-azaguanine to the corresponding nucleotide and incorporate them into nucleic acids. L. pomona is inhibited by low concentrations of 8-azaguanine (50 μg/ml) and this inhibition is associated with less than a 5% replacement of the ribonucleic acid (RNA) guanine residues by the analogue. Guanine possessed the highest activity for antagonizing the inhibitory effect of 8-azaguanine. The biosynthetic process of L. pomona most affected by the analogue was a relative increase in RNA synthesis. The analogue-resistant L. biflexa incorporated 1/10 as much 8-azaguanine as L. pomona. The higher rate of purine biosynthesis, in addition to the lesser amount of 8-azaguanine incorporated, may account for the analogue resistance of L. biflexa.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.



1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.





2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomáš Kouba ◽  
Tomáš Koval’ ◽  
Petra Sudzinová ◽  
Jiří Pospíšil ◽  
Barbora Brezovská ◽  
...  

AbstractRNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.



Blood ◽  
1966 ◽  
Vol 28 (2) ◽  
pp. 188-200 ◽  
Author(s):  
MARTIN J. CLINE

Abstract Phagocytosis has profound effects on several aspects of the RNA metabolism of human leukocytes. The major changes induced by particle ingestion appear to be (1) an increased uptake of pyrimidine precursors from the suspending medium, (2) a contraction in the size of the nucleotide pool, (3) an accelerated rate of destruction of preexisting RNA, and (4) an increased rate of RNA synthesis. Sucrose density gradient analysis of the newly synthesized RNA suggests that several classes of RNA are involved in this process. The increased turnover rate of the nucleotide pool and of the cellular RNA of the leukocyte is proportional, within limits, to the total load of ingested particles.



2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Halyna M. Semchyshyn

The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeastS. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance ofS. cerevisiaeto different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.



1974 ◽  
Vol 20 (7) ◽  
pp. 977-980 ◽  
Author(s):  
David K. Horowitz ◽  
Peter J. Russell

Sexual differentiation in male strains of the aquatic fungus Achlya ambisexualis Raper is induced by antheridiol, a sexual steroid hormone secreted by female strains. Antheridiol-induced initiation of the morphologically distinct antheridial branches in male Achlya is completely prevented when DNA-dependent RNA synthesis is inhibited by actinomycin D. In addition antheridial branch elongation is inhibited to a degree proportional to the concentration of actinomycin D added. Thus, evidence indicates that RNA synthesis is required for antheridiol-induced initiation of antheridial branching and that continued RNA synthesis is required for elongation of antheridial branches.



1973 ◽  
Vol 136 (3) ◽  
pp. 467-475 ◽  
Author(s):  
J. B. Roberts ◽  
F. L. Bygrave

1. The addition of mitochondria to an incubation system containing the soluble and microsomal fractions of rat liver enhances severalfold the incorporation of each of ethanolamine, phosphorylethanolamine and CDP-ethanolamine into phosphatidylethanolamine. 2. In the presence of microsomal, mitochondrial and soluble fractions, CDP-ethanolamine exhibits the greatest initial rate of incorporation (approx. 6nmol/h per mg of protein), being slightly faster than that of phosphorylethanolamine (approx. 5nmol/h per mg of protein). Incorporation of ethanolamine proceeds very slowly for the first 20min and only after 30min gives rates approaching those of the other two precursors. 3. By using a substrate ‘dilution’ technique it was shown that in the reconstituted system the affinity of each of the enzymes for their respective substrates is very high: 10μm for ethanolamine, 25μm for phosphorylethanolamine and 5μm for CDP-ethanolamine. 4. Isolation of the mitochondrial and microsomal fractions from the medium after incubation together with phosphorylethanolamine showed that about 70% of the total radioactivity was present in the microsomal fraction and about 30% in the mitochondria after only 20min. Similar experiments with ethanolamine as precursor revealed that after 20min only about 15% of the total radioactivity was present in the mitochondria but that after 40min about 30% was present in this fraction. 5. Heating and phospholipase treatment of mitochondria, but not freeze-thawing, eliminated the stimulatory effect of mitochondria on phospholipid synthesis. 6. The reconstituted system exhibits an absolute requirement for Mg2+(2mm gave maximal rates) and is inhibited by very low concentrations of Ca2+(100μm-Ca2+produced half-maximal inhibition with 3mm-Mg2+). Further addition of Mg2+overcame the Ca2+inhibition, suggesting that the inhibitory effect is readily reversible. 7. The concept that modification of the Mg2+/Ca2+ratio is a means of controlling the rate of cellular phospholipid synthesis is introduced.





Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
YiLin Ren ◽  
Martin A D'Ambrosio ◽  
Hong Wang ◽  
Jeffrey L Garvin ◽  
Oscar A Carretero

Tubuloglomerular feedback (TGF) is an autoregulatory mechanism of the renal microcirculation in which the macula densa (MD) senses NaCl concentration in the lumen of the nephron and sends a signal that controls glomerular filtration rate by constricting the afferent arteriole (Af-Art). We have shown that MD depolarization is sufficient for inducing TGF. Carbon monoxide (CO), either endogenous or exogenous, is known to inhibit TGF, at least in part via cGMP. However, whether cGMP-independent mechanisms are involved, and where in the TGF cascade CO exerts its inhibitory effect, remain unknown. Thus we hypothesize that CO, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from MD cell depolarization. In vitro , microdissected rabbit Af-Arts and their attached MD were simultaneously perfused and TGF was measured as the decrease in Af-Art diameter. Depolarization of the MD was induced by switching luminal KCl from 4 to 50 mM in the presence of the potassium ionophore valinomycin, while adding the CO-releasing molecule CORM-3 to the MD perfusate at non-toxic concentrations. CORM-3 blunted depolarization-induced TGF at a concentration of 50 μM, from 3.6±0.4 to 2.5±0.4 μm (P<0.01), and completely abolished it at a concentration of 100 μM, to 0.1±0.1 μm (P<0.001, n=6). Similar results were found with 100 μM CORM-3 when depolarization was induced by nystatin (3.0±0.2 vs. 0.4±0.2 μm, P <0.001, n=6). This indicates that CO inhibits TGF acting downstream from depolarization. When cGMP generation was blocked with the guanylate cyclase inhibitor LY-83583 (1 μM) added to the MD, CORM-3 no longer had an effect on depolarization-induced TGF at 50 μM (2.9±0.4 vs. 3.0±0.4 μm), but retained partial inhibitory effect on TGF at 100 μM (1.3±0.2 μm, P =0.02, n=9). This suggests that CO acts via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations. Finally, we confirmed that cGMP inhibits TGF downstream from MD depolarization by adding the degradation-resistant cGMP analog dibutyryl-cGMP (500 μM), which attenuated depolarization-induced TGF (from 3.9±0.5 to 0.6±0.2 μm, P <0.01, n=6). Our results could help explain the physiological role of CO in controlling the renal microcirculation.



Sign in / Sign up

Export Citation Format

Share Document