Effect of atrazine on growth activity of Sclerotium rolfsii and Trichoderma viride in soil

1968 ◽  
Vol 14 (12) ◽  
pp. 1283-1288 ◽  
Author(s):  
R. Rodriguez-Kabana ◽  
E. A. Curl ◽  
H. H. Funderburk Jr.

Effect of the soil-applied herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on growth activity of Sclerotium rolfsii and Trichoderma viride was determined in soil culture. The fungi were grown axenically in flasks of sterilized soil containing 0, 8, 20, 40, 80 μg of atrazine per gram of soil, and CO2 evolution was measured at intervals over a period of 19 days for the pathogen and 14 days for T. viride. For S. rolfsii, maximum CO2-carbon was produced in soil with 8 μg of atrazine, this being significantly above the O-herbicide control. Higher concentrations greatly inhibited activity of the pathogen. Correlation coefficients revealed that total production of CO2-C was closely related to amount of NO3-nitrogen consumed and titratable acidity produced (mostly oxalic acid); soil pH decreased with increased activity of the fungus. T. viride grew very rapidly in all treatments, activity being most accelerated between 3 and 10 days after inoculation. Production of CO2-C for all treatments above 8 μg indicated a stimulatory effect upon this fungus. Economic coefficients relating total CO2-C to amount of NO3-N consumed were highest for the 80-μg atrazine treatment and declined with decreasing concentration. Soil pH increased from an initial value of 6.4 to 7.4, with no significant differences between treatment.

1967 ◽  
Vol 13 (10) ◽  
pp. 1343-1349 ◽  
Author(s):  
R. Rodriguez-Kabana ◽  
E. A. Curl ◽  
H. H. Funderburk Jr.

The effect of atrazine (2-chloro-4-ethylamino-6-isopropylamino-.s-triazine) on growth of Sclerotium rolfsii and Trichoderma viride was studied in liquid culture. The fungi were grown in Czapek solution containing 0, 8, 20, 40, and 80 μg of the herbicide per milliliter, and growth responses were measured at intervals of 3–5 days after inoculation. Mycelial dry weight of S. rolfsii was little affected at concentrations below 40 μg/ml, but was decreased at the higher concentrations. Total mycelium produced by T. viride was greater with all atrazine treatments than in the control. For S. rolfsii, the efficiency of utilization (economic coefficient) of glucose, inorganic P, and NO3-N with atrazine at 8 μg/ml was slightly higher than that of the control, but was significantly reduced at higher concentrations. Values for glucose utilization efficiency in T. viride increased with herbicide at 8 and 20 μg/ml, then decreased considerably at other concentrations, but remained higher than the control; a similar pattern was revealed for P and NO3-N utilization. Titratable acidity in the medium increased for both fungi with increased atrazine concentration.


1978 ◽  
Vol 24 (4) ◽  
pp. 487-490 ◽  
Author(s):  
R. Rodriguez-Kabana ◽  
W. D. Kelley ◽  
E. A. Curl

Cultures of Sclerotium rolfsii and Trichoderma viride together in autoclaved soil were assayed at intervals during 8 days of incubation for proteolytic activity (PA) of T. viride. Significant proteolytic activity was detected only in soil containing T. viride (i.e., T. viride alone or S. rolfsii + T. viride); greatest activity occurred between 3 and 4 days after infestation and declined rapidly thereafter. Maximal PA in the mixed-culture soil was accompanied by an increase in soil pH. Optimal pH values for PA was 5.5–6.5 with a maximum at 6.0.


1981 ◽  
Vol 21 (110) ◽  
pp. 318
Author(s):  
KD McLachlan

Two thermal silico-phosphates, Rhenania phoshate and Mitsui phosphate, were compared with superphosphate, in the presence and absence of lime, as phosphate fertilizers for an infertile acid soil. The field evidence suggested that silico-phosphates, up to rates supplying 193 kg P ha-1, can be as effective as the lime-superphosphate combination. The combination, supplying 386 kg P ha-1 yielded 4.9 and 8.0 t dry matter ha-1 in the first and second years respectively. Rhenania and Mitsui phosphates, each supplying 193 kg P ha-1, respectively yielded 3.1 and 2.8 t ha-1 in the first year and 4.4 and 5.2 t ha-1 in the second year. There was no evidence that thermal phosphates were superior to the limesuperphosphate combination. All three phosphates had a good residual value in the field. Lime-superphosphate, lime-silicate, and Rhenania phosphate dressings increased soil pH and reduced titratable soil acidity, which in this case was principally exchangeable aluminium. Supplying calcium and raising soil pH appeared to be more important effects of these fertilizers than the effect of their silicate content, though there was some evidence of a positive interaction between the effects of calcium and pH, and the effect of the silicate. Plant growth increased the titratable acidity in proportion to the growth made and the evidence was consistent with the formation of an aluminium-phosphorus complex providing an important source of phosphorus. The role of such a complex in the heavy phosphate applications required and the good residual value of these dressings are-discussed.


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


2002 ◽  
Vol 29 (1) ◽  
pp. 66-71 ◽  
Author(s):  
S. L. Rideout ◽  
T. B. Brenneman ◽  
K. L. Stevenson

Abstract Southern stem rot (caused by the soilborne fungus Sclerotium rolfsii Sacc.) of peanut (Arachis hypogaea L.) traditionally has been assessed based on the percentage of infected 30.5-cm row segments, commonly referred to as disease incidence. Several alternative disease assessment methods were evaluated in four fungicide trials during the growing season (aboveground ratings) and immediately after peanut inversion (belowground ratings). Pearson's correlation coefficients compared disease assessments and yields for all trials. Across all disease assessment methods, belowground assessments at inversion showed a stronger correlation with yield than in-season aboveground assessments. Several of the alternative assessment methods showed a stronger negative correlation with yield than did the traditional disease incidence rating. However, none of the alternative methods were consistently more precise across all assessment dates and trials. There was a significant positive correlation between many of the alternative methods and the traditional disease incidence method. Furthermore, none of the alternative methods was better than the traditional method for detecting differences among fungicide treatments when subjected to ANOVA and subsequent Waller-Duncan mean separation tests (k-ratio = 100). Based on comparisons of the time required to assess disease intensity, the traditional disease assessment method was found to be the most time efficient method of those tested in this study.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Heru Kuswantoro

Most of Indonesia dryland is covered by acid soil which lead to the decreasing potential yield of the crops. In different areas soybean potential yield also different depends on the different soil pH and the availability of the soil. The objective of the research was to study the potential yield of soybean promising lines in acid soil of Central Lampung, Indonesia. Ten promising lines and two check varieties (Tanggamus and Wilis) were grown in acid soil with pH 4.7. The results showed that the highest seed yield was showed by SC5P2P3.5.4.1-5 with 2.51 t/ha. Other soybean promising lines with seed yield over than 2 t/ha-1 was SJ-5/Msr.99.5.4.5-1-6-1 and the check variety Tanggamus. The highest yield of SC5P2P3.5.4.1-5 was caused by the high number of filled pods and the large of seed size. Other nine promising lines also can be developed to obtained grain yield as many as Tanggamus yield in the area with similar soil and climate conditions.


1972 ◽  
Vol 52 (3) ◽  
pp. 427-438 ◽  
Author(s):  
A. J. MacLEAN ◽  
R. L. HALSTEAD ◽  
B. J. FINN

Liming of six acid soil samples in an incubation experiment with rates to raise the soil pH to 6.0 or above eliminated Al soluble in 0.01 M CaCl2, reduced soluble Mn and Zn, increased NO3-N markedly, and at the highest pH increased the amounts of NaHCO3-soluble P in some of the soils. In corresponding pot experiments, liming increased the yield of alfalfa and in three of the soils the yield of barley also. Liming reduced the concentrations of the metals in the plants and at the highest pH tended to increase the P content of the plants. Liming to a pH of about 5.3 eliminated or greatly reduced soluble Al and the soils were base saturated as measured by the replacement of Al, Ca, and Mg by a neutral salt. There was some evidence that liming to reduce soluble Al and possibly Mn was beneficial for plant growth. Gypsum increased the concentrations of Al, Mn, and Zn in 0.01 M CaCl2 extracts of the soils whereas phosphate reduced them. The changes in the Mn content of the plants following these treatments were in agreement with the amounts of Mn in the CaCl2 extracts.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fikeremareyam Chulo ◽  
Fanuel Laekemariam ◽  
Alemayehu Kiflu

Understanding the nutrient dynamics in acid soil is fundamental to carry out proper management. The study was conducted to investigate phosphorus (P) pools and selected properties under different rates of lime for acid nitisols of Farawocha, Southern Ethiopia. Four lime rates incubated for a month in three replications were tested. The lime rates were 0 t/ha (0%), 5.25 t/ha (50%), 10.5 t/ha (100%), and 15.75 t/ha (150%). Lime requirement (LR) for 100% was calculated targeting soil pH of 6.5. Data on the P pools such as soluble P (P-sol) and bounded forms of P with iron (Fe-P), aluminum (Al-P), calcium (Ca-P), organic part (Org-P), residual P (Res-P), and total of P fractions were measured. In addition, changes in soil chemical properties such as pH, exchangeable acidity, calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), copper (Cu), boron (B), zinc (Zn), and manganese (Mn) were analyzed. The result showed that total P was 357.5 mg/kg. Compared to nontreated soil, liming at a rate of 15.75 t/ha significantly improved P-sol (34.2%, r2 = 0.88), Ca-P (61.6%, r2 = 0.92), and Res-P (195%, r2 = 0.94); however, it reduced Fe-P (58.5%, r2 = −0.83), Al-P (71%, r2 = −0.97), and Org-P (19.1%, r2 = 0.93). Overall, the P-associated fractions in the soil, regardless of the lime rates, were in the order of Org_P > Res_P > Fe_P > Ca_P > Al_P > P-sol. Liming raised soil pH by 2.1 units (4.5 to 6.6) over nonlimed soil, whereas it reduced exchangeable acidity from 4.18 to 0.23 meq/100 g soil. Available P, Ca, Mg, S, Cu, Zn, and B contents were significantly improved with lime application. However, liming reduced Fe and Mn contents. In conclusion, these findings showed that liming facilitated the release of P from various pools, modified pH and exchangeable acidity, and resulted in beneficial changes for most of the soil chemical properties.


2011 ◽  
Vol 52 (No. 1) ◽  
pp. 41-46 ◽  
Author(s):  
L. Brodský ◽  
J. Száková ◽  
M. Bazalová ◽  
V. Penížek

This paper investigates the proportional effect of selected soil properties – low spatial variation changes are related to their local magnitudes (here standard deviation vs. mean). Content of available P, K, and Mg, and soil pH were analysed on nine agricultural fields of the Xzech Republic. Firstly, strong direct within-field proportional effect based on Moving Window Statistics (MWS) was found for soil P and K, while Mg did not exhibit any clear proportionality. Soil pH showed indication of inverse proportional effect with high field-to-field fluctuations. The relationship strength of the effect was functionally related to the asymmetry (skewness) of distribution (r = 0.31 × skew 0.08). Secondly, between-field proportional effect of 9 surveyed fields, as a measure at different scale, showed generally parallel results with the MWS approach. Proportionality is therefore not scale dependent. However, slopes of linear relationships were different for the two scales. Finally, models for prediction of proportional variogram parameters were calculated. Correlation coefficients of relationship between semivariance parameters and mean proved that sill-nugget is more stable (r = 0.74 for P and 0.83 for K) than nugget (r = 0.30 for P and 0.53 for K).


1980 ◽  
Vol 20 (106) ◽  
pp. 568 ◽  
Author(s):  
KD McLachlan

A study was made of the role of superphosphate and lime on subterranean clover (Trifolium subterraneum) production on an infertile acid soil in pot culture. Both fertilizers increased the exchangeable calcium in this deficient soil. Lime and superphosphate were involved in nodulation of the clover plants. There was no evidence of the direct involvement of either of them in the nitrogen fixation process, but they did increase nitrogen uptake by the plants. Once the legume functioned adequately, full expression of the yield response to phosphorus on this deficient soil followed. Most efficient phosphorus use occurred at the lime 1255, superphosphate 2000 kg ha-1 level (lime 1/2, P 16). Heavy lime dressing reduced exchangeable magnesium and the phosphorus available to the plant. Aluminium and pH were involved in the effects observed. Lime reduced CaCl2-extractable aluminium and the titratable acidity in the soil. Phosphate increased the CaCl2-extractable aluminium and apparently reduced the titratable aluminium. The combined treatments reduced these three attributes and promoted increased plant growth. Increased plant growth was associated with increased aluminium uptake by the plants, which suggests that the real effect of aluminium may have been on the calcium and phosphorus uptake by the plants, rather than on the toxic nature of the element itself.


Sign in / Sign up

Export Citation Format

Share Document