Characterization and partial purification of β-hydroxybutyrate dehydrogenase from sporulating cells of Bacillus cereus T

1973 ◽  
Vol 19 (6) ◽  
pp. 673-677 ◽  
Author(s):  
E. D. Thompson ◽  
H. M. Nakata

A soluble NAD+-dependent β-hydroxybutyrate (βHB) dehydrogenase was shown to appear 3 to 4 h after the onset of sporulation of Bacillus cereus T. The enzyme was stable in Tris-chloride buffer when frozen, but required 0.05 to 0.1 M of MgCl2 or other divalent cation such as Mn2+, Ba2+, or Ca2+ for stability at 4C. In the presence of phosphate buffer or EDTA, the enzyme lost all activity within 2 min. βHB dehydrogenase was partially purified and shown to have a molecular weight of about 93 000, pH optimum of 8.0 in 0.1 M Tris-chloride buffer, Michaelis constants, Km, of 2.3 × 10−3 M for β-hydroxybutyrate and 9.5 × 10−4 M for NAD+, and was inhibited 40% by 1 × 10−3 M p-hydroxymercuribenzoate. The enzyme from B. cereus T was compared in these respects with βHB dehydrogenases isolated from several non-sporeforming bacteria.

1983 ◽  
Vol 29 (2) ◽  
pp. 242-246 ◽  
Author(s):  
Norman J. Novick ◽  
Max E. Tyler

An L-arabino-aldose dehydrogenase responsible for the oxidation of L-arabinose to L-arabino-γ-lactone has been purified 59-fold from L-arabinose grown cells of Azospirillum brasiliense. The dehydrogenase was found to be specific for substrates with the L-arabino-configuration at carbons 2, 3, and 4. Km values for L-arabinose of 75 and 140 μM were found with NADP and NAD as coenzymes, respectively. The enzyme had a pH optimum of 9.5 in glycine buffer and was stable when heated to 55 °C for 5 min. No enhancement of activity in the presence of any divalent cation or reducing agent tested was found. L-Arabinose dehydrogenase had a molecular weight of 175 000 as measured by the gel filtration technique.


1978 ◽  
Vol 56 (11) ◽  
pp. 1028-1035 ◽  
Author(s):  
Sanford S. Singer ◽  
James Gebhart ◽  
Edward Hess

This manuscript describes purification of sulfotransferase III (STIII), the major hepatic glucocorticoid sulfotransferase of male rats, 77.8 ± 16 fold from cytosol. This represents a probable 250–345 fold enrichment, compared with homogenates. Purified STIII has a molecular weight of 61 500 ± 2500 from Sephadex G-100 chromatography. It is markedly activated by 5 mM divalent Ba, Ca, Co, Cr, Mg, Mn, and Ni salts; inhibited strongly by 5 mM divalent Zn and Cd; and unaffected by 8 mM ADP, ATP, and AMP. Comparison of the ability of purified STIII to sulfate equimolar Cortisol, estradiol-17β, testosterone, and dehydroepiandrosterone suggests that the enzyme may sulfate glucocorticoids preferentially. However, its Cortisol sulfotransferase activity is inhibited by a variety of steroids. Of these, dehydroepiandrosterone, dexamethasone, and progesterone were tested extensively. They were found to be competitive inhibitors. STIII has a sharp pH optimum at pH 6.0 ± 0.1. However, it is routinely assayed at pH 6.8, as explained in the text. It exhibits a sequential mechanism and Km values of 6.82 ± 1.2 and 6.28 ± 0.64 μM for Cortisol and 3′-phosphoadenosine-5′-phosphosulfate, respectively. It also possesses essential sulfhydryl groups, as shown by p-hydroxymercuribenzoate inhibition studies.


1971 ◽  
Vol 49 (1) ◽  
pp. 127-138 ◽  
Author(s):  
E. Pahlich ◽  
K. W. Joy

Glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase (deaminating), EC 1.4.1.2) has been purified 1250-fold from pea roots. The preparation contains only a single protein, and the molecular weight was estimated to be 208 000 ± 10 000. The enzyme shows NADH (aminating) and NAD+ (deaminating) activities, but the ratio of these activities is not constant and can be changed experimentally. NADPH activity is also present and shows a relatively constant ratio to NAD+ activity. EDTA inhibits NADH activity in intermediate concentrations, but reactivates at higher concentrations. NAD+ (and NADPH) activity is only slightly changed by EDTA. The effects of dioxane and the coenzymes on the enzyme are also reported. Mechanisms which could explain the different activity ratios, in terms of two interconvertible enzyme forms, are discussed.The pH optimum for NADH and NAD+ activities is about pH 8.0. Michaelis constants were found to be: α-ketoglutarate, 3.3 × 10−3 M; ammonium (sulfate), 3.8 × 10−2 M; glutamate, 7.3 × 10−3 M; NADH, 8.6 × 10−4 M; NAD+, 6.5 × 10−4 M. The enzyme is highly specific for the substrates glutamate and α-ketoglutarate, showing no alanine or aspartate dehydrogenase activity, and no deamination with a range of amino acids.


1974 ◽  
Vol 141 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Rolf Morosoli ◽  
Nicole Bégin-Heick

1. The cytosol alcohol dehydrogenase (alcohol–NAD oxidoreductase, EC 1.1.1.1) of Astasia longa was partially purified and characterized from cells grown in the presence of air+CO2 (95:5) or of O2+CO2 (95:5). 2. Under both these growth conditions, the cells contained a fraction, ADHII, which was characterized by its electrophoretic properties, by a high degree of resistance to heat inactivation, by a sharp pH optimum at 8.2 and by its kinetic properties. The estimated molecular weight of this fraction was approx. 150000, which is similar to that of yeast alcohol dehydrogenase. 3. Cells grown in air+CO2 (95:5) contain another fraction, ADHI, which can be further separated into two subfractions by polyacrylamide-gel electrophoresis and by DEAE-cellulose chromatography. This was termed fraction ‘ADHI-air’. 4. In addition to fraction ADHII, cells grown in the presence of O2 have a twofold increase in fraction ADHI-air activity as well as two new fractions that could not be demonstrated in air-grown cells. These new fractions which we have called fraction ‘ADHI-O2’, account for about 10% of the total activity. 5. The ADHI fractions (air) and (O2) have similar broad pH–activity curves and similar kinetic properties, both having a lower Km for ethanol and NAD than fraction ADHII. However, they differ from each other with respect to their activity with various substrates. The estimated molecular weight of these two ADHI fractions and their chromatographic behaviour on hydroxyapatite and on DEAE-cellulose also distinguish them.


1976 ◽  
Vol 157 (2) ◽  
pp. 381-387 ◽  
Author(s):  
G M Umezurike

1. The enzyme beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) from the gut contents of active Achatina achatina exists in two molecular forms, beta-glucosidase C (mol.wt. about 82000) and D (mol.wt. about 41000). 2. Only the lower-molecular-weight species was found in the gut contents of aestivating snails or in extracts from their digestive glands and washed gut walls. 3. On re-activation of some aestivating snails, betion of ATP and Mg2+ to the isolated gut contents or to extracts from washed gut walls led to the formation of higher-molecular-weight forms of the enzyme, beta-glucosidase A (mol.wt. about 329000) and beta-glucosidase B (mol.wt. about 165000). 5. All these forms of the enzyme have similar pH optimum (pH 5.0-5.6). 6. The Michaelis constants (Km) and heat stability of the enzyme increased with increasing molecular complexity.


1971 ◽  
Vol 17 (10) ◽  
pp. 1273-1277 ◽  
Author(s):  
Leroy C. Blankenship ◽  
J. R. Mencher

An enzyme obtained from Bacillus cereus T spores which catalyzes the reduction of the disulfide, 5, 5′-dithiobis (2-nitrobenzoic acid) (DTNB), has been partially purified and characterized. The enzyme required either reduced nicotinamide adenine dinucleotide phosphate (NADPH2) or reduced nicotinamide adenine dinucleotide (NADH2) as electron donor. It had a pH optimum of 8, was destroyed by heating at 70C for 5 min, and was stimulated by Ca2+ and Mg2+. No other small molecular weight disulfides were found to be substrates for the enzyme.


1978 ◽  
Vol 169 (3) ◽  
pp. 597-605 ◽  
Author(s):  
Hans Tjernshaugen

1. The dephosphorylation of 3′-AMP, 3′-dAMP, 3′-CMP and 3′-dCMP was studied in the postmicrosomal supernatant of rat spleen and liver. In both organs 3′-AMP and 3′-dAMP were dephosphorylated at an appreciable rate, in both the presence and the absence of Mg2+. The pH optimum for this dephosphorylation was in the range 4.5–5.0. 3′-CMP and 3′-dCMP were very slowly degraded, though the activity towards 3′-dCMP increased somewhat in the presence of Mg2+. The optimum pH for this Mg2+-dependent dephosphorylation was 5.5–6.0. 2. The rate of dephosphorylation of 3′-AMP and 3′-dAMP per mg of protein was about 5 times as high in spleen as in liver. 3. The dephosphorylation of 3′-AMP could be ascribed to a single enzyme with pH optimum about 4.5. The activity towards 3′-dAMP could be resolved into one component coinciding with the 3′-dAMP-degrading enzyme, and one Mg2+-requiring component probably identical with the soluble deoxyinosine-activated nucleotidase. The dephosphorylation of 3′-dCMP seemed to be performed only by the latter enzyme. 4. The enzyme dephosphorylating 3′-AMP was purified 200-fold from the postmicrosomal supernatant and its physical and catalytic properties were compared with those of acid nucleotidase (EC 3.1.3.31) purified from rat liver lysosomes. The two enzymes were identical in all properties tested (substrate specificity, Km, molecular weight, response to phosphatase inhibitors), but some of the data differed from earlier reports on the acid nucleotidase. 5. The subcellular localization of the acid nucleotidase, its relationship to the acid phosphatase(s) and its role in the breakdown of nucleic acid constituents are discussed.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


1974 ◽  
Vol 31 (01) ◽  
pp. 072-085 ◽  
Author(s):  
M Kopitar ◽  
M Stegnar ◽  
B Accetto ◽  
D Lebez

SummaryPlasminogen activator was isolated from disrupted pig leucocytes by the aid of DEAE chromatography, gel filtration on Sephadex G-100 and final purification on CM cellulose, or by preparative gel electrophoresis.Isolated plasminogen activator corresponds No. 3 band of the starting sample of leucocyte cells (that is composed from 10 gel electrophoretic bands).pH optimum was found to be in pH range 8.0–8.5 and the highest pH stability is between pH range 5.0–8.0.Inhibition studies of isolated plasminogen activator were performed with EACA, AMCHA, PAMBA and Trasylol, using Anson and Astrup method. By Astrup method 100% inhibition was found with EACA and Trasylol and 30% with AMCHA. PAMBA gave 60% inhibition already at concentration 10–3 M/ml. Molecular weight of plasminogen activator was determined by gel filtration on Sephadex G-100. The value obtained from 4 different samples was found to be 28000–30500.


Sign in / Sign up

Export Citation Format

Share Document