scholarly journals Partial purification and properties of an acid nucleotidase from the postmicrosomal supernatant of rat spleen

1978 ◽  
Vol 169 (3) ◽  
pp. 597-605 ◽  
Author(s):  
Hans Tjernshaugen

1. The dephosphorylation of 3′-AMP, 3′-dAMP, 3′-CMP and 3′-dCMP was studied in the postmicrosomal supernatant of rat spleen and liver. In both organs 3′-AMP and 3′-dAMP were dephosphorylated at an appreciable rate, in both the presence and the absence of Mg2+. The pH optimum for this dephosphorylation was in the range 4.5–5.0. 3′-CMP and 3′-dCMP were very slowly degraded, though the activity towards 3′-dCMP increased somewhat in the presence of Mg2+. The optimum pH for this Mg2+-dependent dephosphorylation was 5.5–6.0. 2. The rate of dephosphorylation of 3′-AMP and 3′-dAMP per mg of protein was about 5 times as high in spleen as in liver. 3. The dephosphorylation of 3′-AMP could be ascribed to a single enzyme with pH optimum about 4.5. The activity towards 3′-dAMP could be resolved into one component coinciding with the 3′-dAMP-degrading enzyme, and one Mg2+-requiring component probably identical with the soluble deoxyinosine-activated nucleotidase. The dephosphorylation of 3′-dCMP seemed to be performed only by the latter enzyme. 4. The enzyme dephosphorylating 3′-AMP was purified 200-fold from the postmicrosomal supernatant and its physical and catalytic properties were compared with those of acid nucleotidase (EC 3.1.3.31) purified from rat liver lysosomes. The two enzymes were identical in all properties tested (substrate specificity, Km, molecular weight, response to phosphatase inhibitors), but some of the data differed from earlier reports on the acid nucleotidase. 5. The subcellular localization of the acid nucleotidase, its relationship to the acid phosphatase(s) and its role in the breakdown of nucleic acid constituents are discussed.

1983 ◽  
Vol 29 (2) ◽  
pp. 242-246 ◽  
Author(s):  
Norman J. Novick ◽  
Max E. Tyler

An L-arabino-aldose dehydrogenase responsible for the oxidation of L-arabinose to L-arabino-γ-lactone has been purified 59-fold from L-arabinose grown cells of Azospirillum brasiliense. The dehydrogenase was found to be specific for substrates with the L-arabino-configuration at carbons 2, 3, and 4. Km values for L-arabinose of 75 and 140 μM were found with NADP and NAD as coenzymes, respectively. The enzyme had a pH optimum of 9.5 in glycine buffer and was stable when heated to 55 °C for 5 min. No enhancement of activity in the presence of any divalent cation or reducing agent tested was found. L-Arabinose dehydrogenase had a molecular weight of 175 000 as measured by the gel filtration technique.


1974 ◽  
Vol 52 (3) ◽  
pp. 231-240 ◽  
Author(s):  
A. H. Warner ◽  
P. C. Beers ◽  
F. L. Huang

An enzyme that catalyzes the synthesis of P1P4-diguanosine 5′-tetraphosphate (Gp4G) has been isolated and purified from yolk platelets of encysted embryos of the brine shrimp, Artemia salina. The enzyme GTP:GTP guanylyltransferase (Gp4G synthetase) utilizes GTP as substrate, has a pH optimum of 5.9–6.0, a temperature optimum of 40–42 °C, and requires Mg2+ and dithiothreitol for optimal activity. The synthesis of Gp4G is inhibited markedly by pyrophosphate, whereas orthophosphate has no effect on the reaction. In the presence of GDP the enzyme also catalyzes the synthesis of P1,P3-diguanosine 5′-triphosphate (Gp3G), but the rate of synthesis is low compared with Gp4G synthesis and dependent upon other small molecular weight components of yolk platelets.


1978 ◽  
Vol 56 (11) ◽  
pp. 1028-1035 ◽  
Author(s):  
Sanford S. Singer ◽  
James Gebhart ◽  
Edward Hess

This manuscript describes purification of sulfotransferase III (STIII), the major hepatic glucocorticoid sulfotransferase of male rats, 77.8 ± 16 fold from cytosol. This represents a probable 250–345 fold enrichment, compared with homogenates. Purified STIII has a molecular weight of 61 500 ± 2500 from Sephadex G-100 chromatography. It is markedly activated by 5 mM divalent Ba, Ca, Co, Cr, Mg, Mn, and Ni salts; inhibited strongly by 5 mM divalent Zn and Cd; and unaffected by 8 mM ADP, ATP, and AMP. Comparison of the ability of purified STIII to sulfate equimolar Cortisol, estradiol-17β, testosterone, and dehydroepiandrosterone suggests that the enzyme may sulfate glucocorticoids preferentially. However, its Cortisol sulfotransferase activity is inhibited by a variety of steroids. Of these, dehydroepiandrosterone, dexamethasone, and progesterone were tested extensively. They were found to be competitive inhibitors. STIII has a sharp pH optimum at pH 6.0 ± 0.1. However, it is routinely assayed at pH 6.8, as explained in the text. It exhibits a sequential mechanism and Km values of 6.82 ± 1.2 and 6.28 ± 0.64 μM for Cortisol and 3′-phosphoadenosine-5′-phosphosulfate, respectively. It also possesses essential sulfhydryl groups, as shown by p-hydroxymercuribenzoate inhibition studies.


1971 ◽  
Vol 49 (1) ◽  
pp. 127-138 ◽  
Author(s):  
E. Pahlich ◽  
K. W. Joy

Glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase (deaminating), EC 1.4.1.2) has been purified 1250-fold from pea roots. The preparation contains only a single protein, and the molecular weight was estimated to be 208 000 ± 10 000. The enzyme shows NADH (aminating) and NAD+ (deaminating) activities, but the ratio of these activities is not constant and can be changed experimentally. NADPH activity is also present and shows a relatively constant ratio to NAD+ activity. EDTA inhibits NADH activity in intermediate concentrations, but reactivates at higher concentrations. NAD+ (and NADPH) activity is only slightly changed by EDTA. The effects of dioxane and the coenzymes on the enzyme are also reported. Mechanisms which could explain the different activity ratios, in terms of two interconvertible enzyme forms, are discussed.The pH optimum for NADH and NAD+ activities is about pH 8.0. Michaelis constants were found to be: α-ketoglutarate, 3.3 × 10−3 M; ammonium (sulfate), 3.8 × 10−2 M; glutamate, 7.3 × 10−3 M; NADH, 8.6 × 10−4 M; NAD+, 6.5 × 10−4 M. The enzyme is highly specific for the substrates glutamate and α-ketoglutarate, showing no alanine or aspartate dehydrogenase activity, and no deamination with a range of amino acids.


1982 ◽  
Vol 37 (5-6) ◽  
pp. 381-384 ◽  
Author(s):  
Blanca Cifuentes ◽  
C. Vicente

Abstract A glucosamine-P isomerase has been identified in Proteus mirabilis. The 113-fold purified enzyme exhibits a pH optimum of 7.5 with a secondary maximum at 8.5 and a temperature optimum at 37 °C. The apparent Km was 13.3 mᴍ for fructose-6-P and 18.8 mᴍ for ʟ-glutamine. Molecular weight of the enzyme has been estimated as 120000 and the protein can be dissociated in four subunits by SDS-polyacrylamide electrophoresis.


1991 ◽  
Vol 18 (6) ◽  
pp. 615 ◽  
Author(s):  
RE Guthrie ◽  
KD Mclachlan ◽  
DGD Marco

Procedures for the partial purification of two phosphatase isozymes found in phosphorus deficient wheat plants are given. The method employs ammonium sulfate precipitation and hydroxylapatite, Con A-Sepharose, anion exchange and size exclusion chromatography. Measurements of their Km, Vmax, pI and molecular weight are reported. Evidence is provided that there are empirical differences in substrate utilisation between these phosphatase isozymes associated with phosphorus deficient plants.


1977 ◽  
Vol 161 (2) ◽  
pp. 357-370 ◽  
Author(s):  
C W Bamforth ◽  
P J Large

1. Extracts of amine-grown Pseudomonas aminovorans contained a particle-bound N-methylglutamate dehydrogenase (EC 1.5.99.5). The enzyme was not present in succinate-grown cells, and activity appeared before growth began in succinate-grown cells which had been transferred to methylamine growth medium. 2. Membrane-containing preparations from methylamine-grown cells catalysed an N-methylglutamate-dependent uptake of O2 or reduction of cytochrome c, which was sensitive to inhibitors of the electron-transport chain. 3. N-Methylglutamate dehydrogenase activity with phenazine methosulphate or 2,6-dichlorophenol-indophenol as electron acceptor could be solubilized with 1% (w/v) Triton X-100. The solubilized enzyme was much less active with cytochrome c as electron acceptor and did not sediment in 1 h at 150000g. Solubilization was accompanied by a change in the pH optimum for activity. 4. The solubilized enzyme was partially purified by Sepharose 4B and hydroxyapatite chromatograpy to yield a preparation 22-fold increased in specific activity over the crude extract. 5. The partially-purified enzyme was active with sarcosine, N-methylalanine and N-methylaspartate as well as with N-methylglutamate. Evidence suggesting activity with N-methyl D-amino acids as well as with the L-forms was obtained. 6. The enzyme was inhibited by p-chloromercuribenzoate, iodoacetamide and by both ionic and non-ionic detergents. 2-Oxoglutarate and formaldehyde were also inhibitors. 7. Kinetic analysis confirmed previous workers' observations of a group transfer (Ping Pong) mechanism. 8. Spectral observations suggested that the partially purified preparation contained flavoprotein and a b-type cytochrome. 9. The role of the enzyme in the oxidation of methylamine is discussed.


1985 ◽  
Vol 63 (11) ◽  
pp. 1160-1166 ◽  
Author(s):  
Pierre Gondé ◽  
Robert Ratomahenina ◽  
Alain Arnaud ◽  
Pierre Galzy

The exocellular enzyme β-glucosidase of Candida molischiana was studied. This strain is able to ferment soluble cellodextrins. The enzyme was partially purified by ion-exchange chromatography and gel filtration. The molecular weight of this enzyme was 120 000; its optimum pH was between 4 and 4.5 and its optimum temperature was 60 °C. This enzyme was active against different soluble glucosides and was inhibited by p-chloromercuribenzoate, gluconolactone, and glucose. A "glucosyltransferase" activity appeared in the presence of ethanol. The biosynthesis of the enzyme was constitutive but repressed by glucose.


1990 ◽  
Vol 268 (1) ◽  
pp. 117-122 ◽  
Author(s):  
A C Skladanowski ◽  
A C Newby

A soluble 5′-nucleotidase was purified 200-fold from pigeon heart. The enzyme (1) had an apparent molecular mass close to 150 kDa, (2) had a neutral pH optimum and hydrolysed a wide range of nucleoside 5′-monophosphates with a 15-fold preference for AMP over IMP, (3) at near-physiological concentrations of AMP was activated by ADP but not by ATP, (4) was inhibited by high Mg2+ concentration and high ionic strength, (5) was weakly inhibited by p-nitrophenol phosphate and Pi, and (6) was non-competitively inhibited more potently by 5′-deoxy-5′-isobutylthioinosine than by 5′-deoxy-5′-isobutylthioadenosine, but not by [alpha, beta-methylene]ADP. The data show that the enzyme is distinct from the ecto-5′-nucleotidase and from the previously purified IMP-specific 5′-nucleotidase. They also predict that the enzyme is activated during ATP catabolism and hence will generate a more-than-linear increase in the adenosine-formation rate in response to an increase in cytosolic AMP concentration.


1974 ◽  
Vol 141 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Rolf Morosoli ◽  
Nicole Bégin-Heick

1. The cytosol alcohol dehydrogenase (alcohol–NAD oxidoreductase, EC 1.1.1.1) of Astasia longa was partially purified and characterized from cells grown in the presence of air+CO2 (95:5) or of O2+CO2 (95:5). 2. Under both these growth conditions, the cells contained a fraction, ADHII, which was characterized by its electrophoretic properties, by a high degree of resistance to heat inactivation, by a sharp pH optimum at 8.2 and by its kinetic properties. The estimated molecular weight of this fraction was approx. 150000, which is similar to that of yeast alcohol dehydrogenase. 3. Cells grown in air+CO2 (95:5) contain another fraction, ADHI, which can be further separated into two subfractions by polyacrylamide-gel electrophoresis and by DEAE-cellulose chromatography. This was termed fraction ‘ADHI-air’. 4. In addition to fraction ADHII, cells grown in the presence of O2 have a twofold increase in fraction ADHI-air activity as well as two new fractions that could not be demonstrated in air-grown cells. These new fractions which we have called fraction ‘ADHI-O2’, account for about 10% of the total activity. 5. The ADHI fractions (air) and (O2) have similar broad pH–activity curves and similar kinetic properties, both having a lower Km for ethanol and NAD than fraction ADHII. However, they differ from each other with respect to their activity with various substrates. The estimated molecular weight of these two ADHI fractions and their chromatographic behaviour on hydroxyapatite and on DEAE-cellulose also distinguish them.


Sign in / Sign up

Export Citation Format

Share Document