Catabolite repression in Streptomyces venezuelae. Induction of β-galactosidase, chloramphenicol production, and intracellular cyclic adenosine 3′,5′-monophosphate concentrations

1982 ◽  
Vol 28 (3) ◽  
pp. 311-317 ◽  
Author(s):  
S. Chatterjee ◽  
L. C. Vining

Chloramphenicol production was studied in cultures of Streptomyces venezuelae growing in a simple buffered medium with ammonia as the nitrogen source and glucose, lactose, or a glucose–lactose mixture as the sole source of carbon. With each carbon source the antibiotic was formed during growth. In the glucose–lactose medium, the production pattern was biphasic; a marked decrease in the rate of synthesis was associated with depletion of glucose from the medium and a corresponding diauxie pause in growth. Cells of S. venezuelae contained an inducible β-galactosidase. Induction by lactose was suppressed by glucose. Measurement of the concentration of intracellular adenonsine 3′,5′-cyclic monophosphate during growth of cultures with glucose or a glucose–lactose mixture as the source of carbon showed no appreciable changes coinciding with depletion of glucose or the onset of chloramphenicol biosynthesis. It is concluded that the cyclic nucleotide does not mediate selective nutrient utilization or control antibiotic biosynthesis in this organism.

1988 ◽  
Vol 34 (11) ◽  
pp. 1217-1223 ◽  
Author(s):  
R. K. Bhatnagar ◽  
J. L. Doull ◽  
L. C. Vining

Both carbon- and nitrogen-limited media that supported a biphasic pattern of growth and chloramphenicol biosynthesis were devised for batch cultures of Streptomyces venezuelae. Where onset of the idiophase was associated with nitrogen depletion, a sharp peak of arylamine synthetase activity coincided with the onset of antibiotic production. The specific activity of the enzyme was highest when the carbon source in the medium was also near depletion at the trophophase–idiophase boundary. In media providing a substantial excess of carbon source through the idiophase, the peak specific activity was reduced by 75%, although the timing of enzyme synthesis was unaltered. Morever, chemostat cultures in which the growth rate was limited by the glucose concentration in the input medium failed to show a decrease in specific production of chloramphenicol as the steady-state intracellular glucose concentration was increased. The results suggest that a form of "carbon catabolite repression" regulates synthesis of chloramphenicol biosynthetic enzymes during a trophophase–idiophase transition induced by nitrogen starvation. However, this regulatory mechanism does not establish the timing of antibiotic biosynthesis and does not function during nitrogen-sufficient growth in the presence of excess glucose.


1982 ◽  
Vol 28 (6) ◽  
pp. 593-599 ◽  
Author(s):  
S. Chatterjee ◽  
L. C. Vining

β-Glucosidase activity was induced in Streptomyces venezuelae during growth on cellobiose, gentiobiose, salicin, methyl β-glucoside, and p-nitrophenyl β-D-glucopyranoside. Activity in cell extracts was separated by DEAE-cellulose chromatography into two fractions differing in substrate preference. One component showed higher activity with, and was more strongly induced by, cellobiose; the other showed greater activity and inducibility with salicin. Addition of glucose to cultures severely depressed induction of β-glucosidase activity by cellobiose but not by salicin. Acetate and several amino acids inhibited induction by either substrate. The action of glucose was not reversed by cyclic AMP. Cultures of S. venezuelae using glucose, cellobiose, or a mixture of the two saccharides as their carbon source produced chloramphenicol during growth. In contrast with its effect on the induction of cellobiase activity, glucose did not suppress chloramphenicol production, indicating that the control mechanisms that establish carbon source preferences are not linked to those that regulate antibiotic biosynthesis in this organism.


Weed Science ◽  
1990 ◽  
Vol 38 (4-5) ◽  
pp. 416-420 ◽  
Author(s):  
Hone L. Sun ◽  
Thomas J. Sheets ◽  
Frederick T. Corbin

A mixed microbial culture able to transform alachlor at a concentration of 50 μg ml-1was obtained from alachlor-treated soil after an enrichment period of 84 days. The microbial community was composed of seven strains of bacteria. No single isolate was able to utilize alachlor as a sole source of carbon. There was no alachlor left in the enriched culture after a 14-day incubation, but only 12% of the14C-ring-labeled alachlor was converted to14CO2through ring cleavage during 14 days in the basal medium amended with alachlor as a sole carbon source. The presence of sucrose as an alternative carbon source decreased the mineralization potential of the enriched culture, but sucrose increased the mineralizing ability of a three-member mixed culture. Thin-layer chromatographic analysis showed that there were four unidentified metabolites of alachlor produced by the enriched culture. Sucrose decreased the amount of two of the four metabolites. The absence of a noticeable decline in radioactivity beyond the initial 12% suggested that the side chain of alachlor was utilized as carbon source by the enriched culture. Little difference in radioactivity between growth medium and cell-free supernatant of the growth medium suggested that the carbon in the ring was not incorporated into the cells of the degrading microorganisms.


Author(s):  
Ping Guo ◽  
Weiwei Xu ◽  
Shi Tang ◽  
Binxia Cao ◽  
Danna Wei ◽  
...  

One cold-adapted strain, named Planococcus sp. XW-1, was isolated from the Yellow Sea. The strain can produce biosurfactant with petroleum as sole source of carbon at low temperature (4 °C). The biosurfactant was identified as glycolipid-type biosurfactant species by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). It reduced the surface tension of water to 26.8 mN/m with a critical micelle concentration measurement of 60 mg/L. The produced biosurfactant possesses high surface activity at wide ranges of temperature (−18–105 °C), pH values (2–12), and salt concentrations (1–18%). The biosurfactant exhibited higher surface activity and higher growth rate of cells with hexadecane and diesel as carbon source. The strain Planococcus sp. XW-1 was also effective in degrading crude oil, after 21 days of growth at 4 °C in medium with 1% crude oil and 1% (v/v) bacteria broth, 54% of crude oil was degraded. The results suggest that Planococcus sp. XW-1 is a promising candidate for use in the bioremediation of petroleum-contaminated seawater in the Yellow Sea during winter. This study reported for the first time that Planococcus isolated from the Yellow Sea can produce biosurfactant using petroleum as the sole carbon source at low temperature (4 °C), showing its ecological role in the remediation of marine petroleum pollution.


Hoehnea ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Flaviane Lopes Ferreira ◽  
Cesar Barretta Dall'Antonia ◽  
Emerson Andrade Shiga ◽  
Larissa Juliani Alvim ◽  
Rosemeire Aparecida Bom Pessoni

ABSTRACT The aim of the present work was to assess the enzymatic activity of six strains of filamentous fungi grown in liquid media containing 1% sugarcane bagasse as the sole carbon source. All fungal strains were able to use this agro-industrial residue, producing various types of enzymes, such as cellulases, xylanases, amylases, pectinases, and laccases. However, Aspergillus japonicus Saito was the most efficient producer, showing the highest enzymatic activity for laccase (395.73 U L-1), endo-β-1,4-xylanase (3.55 U mL-1) and β-xylosidase (9.74 U mL-1) at seven, fourteen and twenty-one days in culture, respectively. Furthermore, the endo-β-1,4-xylanases and β-xylosidases of A. japonicus showed maximum activity at 50°C, and pH 5.5 and pH 3.5-4.5, respectively. Thus, these results indicate that A. japonicus has a great biotechnological potential for the production of these enzymes using sugarcane bagasse as the sole source of carbon.


1997 ◽  
Vol 43 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Stuart M. Pitson ◽  
Robert J. Seviour ◽  
Barbara M. McDougall

The effect of carbon source on the levels of three (1 → 3)-β-glucanases and a (1 → 6)-β-glucanase in the culture filtrates of the filamentous fungus Acremonium persicinum was investigated. All four enzymes were produced during growth of the fungus on (1 → 3)-, (1 → 6)-, and (1 → 3)(1 → 6)-β-glucans as well as β-linked oligoglucosides. However, only one (1 → 3)-β-glucanase and the (1 → 6)-β-glucanase were detected during growth on a range of other carbon sources including glucose, carboxymethylcellulose, and the α-glucan pullulan. The presence of glucose in the medium markedly decreased the production of all four glucanases, although the concentration required to effect complete repression of enzyme levels varied for the different enzymes. Similar repressive effects were also observed with sucrose, fructose, and galactose. The most likely explanations for these observations are that the synthesis of the (1 → 6)-β-glucanase and one of the (1 → 3)-β-glucanases is controlled by carbon catabolite repression, while the remaining two (1 → 3)-β-glucanases are inducible enzymes subject to carbon catabolite repression.Key words: (1 → 3)-β-glucanase, (1 → 6)-β-glucanase, Acremonium persicinum, regulation of synthesis, fungal β-glucanases.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Leandro José de Assis ◽  
Mevlut Ulas ◽  
Laure Nicolas Annick Ries ◽  
Nadia Ali Mohamed El Ramli ◽  
Ozlem Sarikaya-Bayram ◽  
...  

ABSTRACTThe attachment of one or more ubiquitin molecules by SCF (Skp–Cullin–F-box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungusAspergillus nidulans, CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δfbx23mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications.IMPORTANCEThe production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organismAspergillus nidulansin the presence of glucose and the biotechnologically relevant plant polysaccharide xylan.


1988 ◽  
Vol 20 (3) ◽  
pp. 189-195 ◽  
Author(s):  
M. I. M. Soares ◽  
S. Belkin ◽  
A. Abeliovich

Laboratory denitrification studies were conducted in a sand column using sucrose as a biodegradable carbon source. The denitrification capacity of the system was followed for more than one year. Column efficiency was dependent on the flow rate and on the carbon to nitrogen ratio in the treated water. After a few months of operation, visible accumulation of gas in the active zone was accompanied by a marked decrease in column permeability. Vacuum treatment restored permeability to its original level; only partial recovery was achieved by simply allowing the slow natural release of gas. He suggest that under the conditions tested, clogging resulted from the accumulation of microbiologically produced gas.


Sign in / Sign up

Export Citation Format

Share Document