A comparison of the effects of several antifungal imidazole derivatives and polyenes on Candida albicans: an ultrastructural study by scanning electron microscopy

1982 ◽  
Vol 28 (10) ◽  
pp. 1119-1126 ◽  
Author(s):  
M. Bastide ◽  
S. Jouvert ◽  
J.-M. Bastide

The early events in the interaction of two polyene (amphotericin B and nystatin) and five imidazole (clotrimazole, ketoconazole, miconazole, isoconazole, and econazole) antimycotics used at fungicidal concentrations with the surface of Candida albicans were studied by scanning electron microscopic examination of treated intact young yeast cells, treated spheroplasts, and spheroplasts liberated from treated young yeast cells. In all cases, treatment lasted 2 h. The polyenes passed through the yeast cell wall and interacted with the cytoplasmic membrane causing the spheroplasts to lose their characteristic spheric form and to liberate their contents. Clotrimazole caused the formation of numerous circular openings in the cytoplasmic membrane, but only when the agent was used to treat spheroplasts directly. Ketoconazole, miconazole, isoconazole, and econazole interacted with the cell wall causing formation of convolutions and wrinkles. The three imidazole derivatives that are structurally closely related, miconazole, isoconazole, and econazole, inhibited the enzyme-catalyzed release of spheroplasts from young yeast cells.

Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


1982 ◽  
Vol 91 (6) ◽  
pp. 612-614 ◽  
Author(s):  
James P. Dudley ◽  
Lance Eisner ◽  
James D. Cherry

When cilia stop beating, their role in moving mucus ceases, but it is uncertain if nonmotile cilia preserve their external architecture and are thus capable of maintaining an additional role of retarding microbial access to the cell. Cilia of chicken embryo tracheal organ cultures were observed until their activity stopped. When examined with scanning electron microscopy, ciliary axonemes did not appear to differ significantly from normally functioning cilia when observed at lower magnifications. Since their density can remain essentially unchanged, nonbeating cilia may still have a role in protecting respiratory membrane from toxic microorganisms.


Author(s):  
Peter M. Andrews

Although there have been a number of recent scanning electron microscopic reports on the renal glomerulus, the advantages of scanning electron microscopy have not yet been applied to a systematic study of the uriniferous tubules. In the present investigation, scanning electron microscopy was used to study the ultrastructural morphology of the proximal, distal, thin loop, and collecting tubules. Material for observation was taken from rat kidneys which were fixed by vascular perfusion, sectioned by either cutting or fracturing technigues, and critically point dried.The brush border characterising proximal tubules is first detected on the luminal surface of Bowman's capsule adjacent to the urinary pole orifice. In this region one frequently finds irregular microvilli characterized by broad and flattened bases with occasional bulbous structures protruding from their surfaces.


1993 ◽  
Vol 39 (11) ◽  
pp. 1014-1021 ◽  
Author(s):  
L. Mihailova ◽  
N. Markova ◽  
T. Radoucheva ◽  
D. Veljanov ◽  
S. Radoevska

Listeria monocytogenes 4b and its forms without cell walls (L forms of a protoplastic type) were used to study in vivo interactions with host cells. Samples of peritoneal lavage fluid were obtained from rats intraperitoneally inoculated at intervals between 1 and 15 days after challenge, for scanning electron microscopic, bacteriological, biochemical, and cytometrical investigations. Scanning electron microscopic examination revealed continuous adhesion of L forms on the macrophage surface up to 15 days after inoculation. The persistence of the L forms within the peritoneal cavity was also shown bacteriologically at all sample times, while the parental bacterial forms were isolated from the peritoneal cavity up to 7 days after challenge. The total count of peritoneal exudative cells determined by automated flow peroxidase cytometry peaked on the 15th day in animals infected with parental forms, while in animals infected with L forms the peak was lower and the macrophage population was predominant. The glycolytic and acid phosphatase activity of peritoneal exudative cells was two times higher in rats infected with L forms as compared with rats infected with the L. monocytogenes parental forms on the 3rd day after challenge. An understanding of the nature of the interactions between L forms of L. monocytogenes and peritoneal exudative cells found in vivo could be used to establish the influence of L forms on host cellular defense mechanisms.Key words: Listeria monocytogenes, L forms, peritoneal exudative cells, electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document