Cross hybridization of plasmid and genomic DNA from aromatic and polycyclic aromatic hydrocarbon degrading bacteria

1991 ◽  
Vol 37 (12) ◽  
pp. 924-932 ◽  
Author(s):  
J. M. Foght ◽  
D. W. S. Westlake

Forty-three bacterial strains were collected from various environmental and commercial sources and their ability to degrade polycyclic aromatic hydrocarbons (PAHs) was confirmed using the criteria of growth, mineralization, and oxidation. Undigested genomic DNA from these strains was blotted by Southern transfer to replicate membranes, which were probed either with purified plasmids (e.g., TOL and NAH7, associated with toluene and naphthalene degradation, respectively) or with genomic DNA from the other strains. The isolates were grouped according to hybridization and PAH-degradation results. One group of eight strains grew on naphthalene vapors as sole carbon source and hybridized with archetypical NAH plasmids. Another group of six isolates mineralized phenanthrene but could not grow on naphthalene, and their cryptic plasmids hybridized with Pseudomonas sp. HL7b, which degrades a wide range of PAHs. The remaining isolates, which could not grow on naphthalene but mineralized and (or) oxidized a variety of PAHs, hybridized with neither the pure plasmids nor heterologous genomic DNA, implying that their PAH-degradative genes were significantly dissimilar. This suggests that using TOL or NAH plasmids to probe an environmental population might reveal toluene- or naphthalene-degradative genes but would underestimate the occurrence of PAH-degradative genes. We suggest that a suite of probes would be necessary to evaluate the PAH-degradation potential of a mixed population. Key words: polycyclic aromatic hydrocarbons, degradative plasmids, NAH plasmid, TOL plasmid, hybridization.

1998 ◽  
Vol 64 (1) ◽  
pp. 359-362 ◽  
Author(s):  
Matthias Kästner ◽  
Maren Breuer-Jammali ◽  
Bernd Mahro

ABSTRACT Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation.


1998 ◽  
Vol 44 (8) ◽  
pp. 743-752 ◽  
Author(s):  
Michael D Aitken ◽  
William T Stringfellow ◽  
Robert D Nagel ◽  
Chikoma Kazunga ◽  
Shu-Hwa Chen

Ten bacterial strains were isolated from seven contaminated soils by enrichment with phenanthrene as the sole carbon source. These isolates and another phenanthrene-degrading strain were examined for various characteristics related to phenanthrene degradation and their ability to metabolize 12 other polycyclic aromatic hydrocarbons (PAH), ranging in size from two to five rings, after growth in the presence of phenanthrene. Fatty acid methyl ester analysis indicated that at least five genera (Agrobacterium, Bacillus, Burkholderia, Pseudomonas, and Sphingomonas) and at least three species of Pseudomonas were represented in this collection. All of the strains oxidized phenanthrene according to Michaelis-Menten kinetics, with half-saturation coefficients well below the aqueous solubility of phenanthrene in all cases. All but one of the strains oxidized 1-hydroxy-2-naphthoate following growth on phenanthrene, and all oxidized at least one downstream intermediate from either or both of the known phenanthrene degradation pathways. All of the isolates could metabolize (oxidize, mineralize, or remove from solution) a broad range of PAH, although the exact range and extent of metabolism for a given substrate were unique to the particular isolate. Benz[a]anthracene, chrysene, and benzo[a]pyrene were each mineralized by eight of the strains, while pyrene was not mineralized by any. Pyrene was, however, removed from solution by all of the isolates, and the presence of at least one significant metabolite from pyrene was observed by radiochromatography for the five strains in which such metabolites were sought. Our results support earlier indications that the mineralization of pyrene by bacteria may require unique metabolic capabilities that do not appear to overlap with the determinants for mineralization of phenanthrene or other high molecular weight PAH.Key words: kinetics, polycyclic aromatic hydrocarbons, phenanthrene, mineralization, benzo[a]pyrene.


2000 ◽  
Vol 66 (5) ◽  
pp. 1917-1922 ◽  
Author(s):  
Chikoma Kazunga ◽  
Michael D. Aitken

ABSTRACT Pyrene is a regulated pollutant at sites contaminated with polycyclic aromatic hydrocarbons (PAH). It is mineralized by some bacteria but is also transformed to nonmineral products by a variety of other PAH-degrading bacteria. We examined the formation of such products by four bacterial strains and identified and further characterized the most apparently significant of these metabolites.Pseudomonas stutzeri strain P16 and Bacillus cereus strain P21 transformed pyrene primarily tocis-4,5-dihydro-4,5-dihydroxypyrene (PYRdHD), the first intermediate in the known pathway for aerobic bacterial mineralization of pyrene. Sphingomonas yanoikuyae strain R1 transformed pyrene to PYRdHD and pyrene-4,5-dione (PYRQ). Both strain R1 and Pseudomonas saccharophila strain P15 transform PYRdHD to PYRQ nearly stoichiometrically, suggesting that PYRQ is formed by oxidation of PYRdHD to 4,5-dihydroxypyrene and subsequent autoxidation of this metabolite. A pyrene-mineralizing organism,Mycobacterium strain PYR-1, also transforms PYRdHD to PYRQ at high initial concentrations of PYRdHD. However, strain PYR-1 is able to use both PYRdHD and PYRQ as growth substrates. PYRdHD strongly inhibited phenanthrene degradation by strains P15 and R1 but had only a minor effect on strains P16 and P21. At their aqueous saturation concentrations, both PYRdHD and PYRQ severely inhibited benzo[a]pyrene mineralization by strains P15 and R1. Collectively, these findings suggest that products derived from pyrene transformation have the potential to accumulate in PAH-contaminated systems and that such products can significantly influence the removal of other PAH. However, these products may be susceptible to subsequent degradation by organisms able to metabolize pyrene more extensively if such organisms are present in the system.


2020 ◽  
Author(s):  
Pengcheng Chen ◽  
Shadi Fatayer ◽  
Bruno Schuler ◽  
Jordan N. Metz ◽  
Leo Gross ◽  
...  

The initial thermal reactions of aromatic hydrocarbons are relevant to many industrial applications. However, tracking the growing number of heavy polycyclic aromatic hydrocarbon (PAH) products is extremely challenging because many reactions are unfolding in parallel from a mixture of molecules. Herein, we studied the reactions of 2,7-dimethylpyrene (DMPY) to decipher the roles of methyl substituents during mild thermal treatment. We found that the presence of methyl substituents is key for reducing the thermal severity required to initiate chemical reactions in natural molecular mixtures. A complex mixture of thermal products including monomers, dimers, and trimers were characterized by NMR, mass spectrometry and non-contact atomic force microscopy (nc-AFM). A wide range of structural transformations including methyl transfer and polymerization reactions were identified. A detailed mechanistic understanding was obtained on the roles of H radicals during the polymerization of polycyclic aromatic hydrocarbons.


2019 ◽  
Vol 10 (4) ◽  
pp. 3789-3795 ◽  
Author(s):  
Neeta Bhagat ◽  
Pranita Roy ◽  
Sohini Singh ◽  
Tanu Allen

Increasing soil pollution all over the world has instigated global concerns as enormous quantities of toxic chemicals and heavy metals like cadmium, lead, mercury, petrochemicals, insecticides, polycyclic aromatic hydrocarbons (PAHs) and chlorophenols are finding their way into the environment, affecting the land and soil, causing soil pollution and thus posing a threat and menace to health and well- being of people and ecosystem. The ubiquitous dissemination, low bioavailability, high perseverance of contaminants like poly-hydrocarbon and metals in soil have the potentially destructive effects to human health, envisages to study the biodegradation of PAHs (polycyclic aromatic hydrocarbons) and PACs (polycyclic aromatic compounds). The diversity of micro-organisms that diminish the PAHs/PACs can be utilized in the advancement of bioremediation techniques. The role of metal-tolerant, (PAH)-degrading bacteria helps in the biodegradation of organic compounds at miscellaneous polluted sites. The isolation of (PAHs)-degrading bacteria from contaminated soil samples collected from garages and petrol pumps of Delhi and NCR region was carried out in the present study.  Also, the bacterial samples were tested for the tolerance towards 4 heavy metals- arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). Morphological studies and biochemical tests were conducted to find the genera of the bacterial samples. The study indicates that hydrocarbons were degraded by the isolates P1, P2, P4, P5, P5*, G1, G3. These isolates were also found to be tolerant at a high concentration of metals (Arsenic, Cadmium, Mercury, and Lead) as minimum inhibitory concentration (MIC) was also calculated. Antibiotic susceptibility of the isolates was tested against various antibiotics. Thus the study suggests that the isolates identified as Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae are not only PAH-degrading but metal-tolerant and antibiotic-resistant too and are of immense potential for bioremediation of contaminated soils.


2020 ◽  
Vol 64 (4) ◽  
pp. 445-454
Author(s):  
Dong-Hee Koh ◽  
Ju-Hyun Park ◽  
Sang-Gil Lee ◽  
Hwan-Cheol Kim ◽  
Sangjun Choi ◽  
...  

Abstract Objectives Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens causing lung and skin cancers in exposed workers. Certain occupations, such as coke production, have been associated with high PAH exposure; however, the number of occupations tested to date remains small. Here, we sought to compare PAH exposure across a wide range of occupations based on levels of 1-hydroxypyrene (1-OHP), the urinary exposure surrogate of PAHs. Methods We collected urine 1-OHP data from the Korean National Environmental Health Survey (KoNEHS), a nationwide biomonitoring survey. We developed a linear regression model, controlling for sex, age, smoking, and survey cycle, and obtained resulting residuals. Then, we computed the fraction of exceeding the third quartile (Q3) level of residuals for each occupation, which is employed as a relative exposure indicator across occupations. Results A total of 15 125 measurements derived from three cycles of KoNEHS were used for analysis. The overall geometric means (GMs) and geometric standard deviation (GSD) of urine 1-OHP levels were 0.16 µg g−1 creatinine and 3.07, respectively. Among the sub-major occupational groups, ‘construction and mining related elementary occupations’ showed the highest fraction (0.45) of exceeding the Q3 level of residuals. Among the minor occupational groups, ‘deliverers’ showed a high fraction (0.42) of exceeding the Q3 level of residuals, which indicates rapidly growing occupations to be addressed. Conclusions Our results provide ancillary information regarding PAH exposure across occupations, especially for occupations for which PAH exposure has not been well characterized.


2012 ◽  
Vol 120 (5) ◽  
pp. 733-738 ◽  
Author(s):  
Julie B. Herbstman ◽  
Deliang Tang ◽  
Deguang Zhu ◽  
Lirong Qu ◽  
Andreas Sjödin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document