Modulation of Hsf1 activity by novobiocin and geldanamycin

2009 ◽  
Vol 87 (6) ◽  
pp. 845-851 ◽  
Author(s):  
Renaud Conde ◽  
Zachery R. Belak ◽  
Manoj Nair ◽  
Ruth F. O’Carroll ◽  
Nick Ovsenek

Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependant increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


1992 ◽  
Vol 12 (9) ◽  
pp. 4104-4111
Author(s):  
L Sistonen ◽  
K D Sarge ◽  
B Phillips ◽  
K Abravaya ◽  
R I Morimoto

Hemin induces nonterminal differentiation of human K562 erythroleukemia cells, which is accompanied by the expression of certain erythroid cell-specific genes, such as the embryonic and fetal globins, and elevated expression of the stress genes hsp70, hsp90, and grp78/BiP. Previous studies revealed that, as during heat shock, transcriptional induction of hsp70 in hemin-treated cells is mediated by activation of heat shock transcription factor (HSF), which binds to the heat shock element (HSE). We report here that hemin activates the DNA-binding activity of HSF2, whereas heat shock induces predominantly the DNA-binding activity of a distinct factor, HSF1. This constitutes the first example of HSF2 activation in vivo. Both hemin and heat shock treatments resulted in equivalent levels of HSF-HSE complexes as analyzed in vitro by gel mobility shift assay, yet transcription of the hsp70 gene was stimulated much less by hemin-induced HSF than by heat shock-induced HSF. Genomic footprinting experiments revealed that hemin-induced HSF and heat shock-induced HSF, HSF2, and HSF1, respectively, occupy the HSE of the human hsp70 promoter in a similar yet not identical manner. We speculate that the difference in occupancy and/or in the transcriptional abilities of HSF1 and HSF2 accounts for the observed differences in the stimulation of hsp70 gene transcription.


1990 ◽  
Vol 9 (1) ◽  
pp. 69-76 ◽  
Author(s):  
A. Wilhelmsson ◽  
S. Cuthill ◽  
M. Denis ◽  
A.C. Wikström ◽  
J.A. Gustafsson ◽  
...  

2006 ◽  
Vol 26 (3) ◽  
pp. 955-964 ◽  
Author(s):  
Julius Anckar ◽  
Ville Hietakangas ◽  
Konstantin Denessiouk ◽  
Dennis J. Thiele ◽  
Mark S. Johnson ◽  
...  

ABSTRACT Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.


1993 ◽  
Vol 13 (3) ◽  
pp. 1599-1609
Author(s):  
J Ananthan ◽  
R Baler ◽  
D Morrissey ◽  
J Zuo ◽  
Y Lan ◽  
...  

Synergistic activation of transcription by Drosophila segmentation genes in tissue culture cells provides a model with which to study combinatorial regulation. We examined the synergistic activation of an engrailed-derived promoter by the pair-rule proteins paired (PRD) and fushi tarazu (FTZ). Synergistic activation by PRD requires regions of the homeodomain or adjacent sequences, and that by FTZ requires the first 171 residues. Surprisingly, deletion of the FTZ homeodomain does not reduce the capacity of the protein for synergistic activation, although this mutation abolishes any detectable DNA-binding activity. This finding suggests that FTZ can function through protein-protein interactions with PRD or other components of the homeoprotein transcription complex, adding a new layer of mechanisms that could underlie the functional specificities and combinatorial regulation of homeoproteins.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2463-2463
Author(s):  
Mohammad Minhajuddin ◽  
Shanshan Pei ◽  
John M Ashton ◽  
Kevin Callahan ◽  
Eleni Lagadinou ◽  
...  

Abstract Abstract 2463 Acute myeloid leukemia is malignant disease, characterized by an accumulation of immature myeloid cells. Recent studies have demonstrated that myeloid leukemia appears to arise from a population of leukemia stem cells (LSCs). LSCs typically reside in a quiescent state and therefore do not respond to standard chemotherapeutic agents, which generally target more actively dividing cells. However, LSCs do display certain unique molecular properties that can be exploited to target this relatively rare population of cells that drive disease pathogenesis. Specifically, NF-kB, a pro-survival transcription factor, is constitutively active in LSCs but not in normal hematopoietic stem cells (HSCs). Targeting this pathway by pharmaceutical approaches has been suggested as a potential strategy in the treatment of leukemia; however, inhibiting this pathway alone is not sufficient to strongly induce AML-specific cell death. Further investigation of pathways, that are unique to AML, is a key in designing more effective pharmacologic agents that specifically target the LSC. We have previously demonstrated that the naturally occurring compound parthenolide (PTL) induces apoptosis in primary AML cells, including the stem and progenitor cell. While the empirical anti-leukemic activity of PTL is clear, the underlying molecular mechanisms remain poorly understood. Here we investigate two properties associated with parthenolide-mediated cell death: i) activation of pro-apoptotic transcription factor p53, ii) inhibition of pro-survival transcription factor NF-kB. In order to evaluate the role of p53 signaling, AML cells were challenged with PTL resulting in the phosphorylation of p53 at serine-15, indicating activation p53 in response to PTL. To further investigate the role of p53 in PTL mediated responses, we generated a lentiviral vector expressing shRNAs specifically targeting p53. Leukemia cells were infected with the lentiviral vector encoding p53 shRNA or scramble control and evaluated by qPCR and western blot analysis. The data showed a significant knockdown of p53 mRNA and protein levels, as well as strong inhibition of p21 expression, indicating the specificity of p53 knockdown. Exposure of cells to PTL in which p53 has been specifically disrupted results in partial rescue from PTL mediated cell death, implicating the role of p53 in this response. Next, we performed a detailed analysis of the molecular mechanism by which PTL inhibits NF-kB pathway activity. Using a novel analog of PTL, we demonstrate that the compound directly binds to IKK-beta. Upon exposure to PTL, IKK-beta shows reduced kinase activity, indicating that binding of the drug directly impairs enzymatic function. Secondary to the inhibition of IKK-beta kinase activity, there is decreased phosphorylation of IkB-alpha at ser32/36, resulting in reduced proteosome mediated degradation. As expected, translocation of RelA/p65 to the nucleus was also impaired, resulting in decreased DNA binding activity as evidenced by electrophoretic mobility shift assay (EMSA). Interestingly, studies with a biotinylated analog also show that PTL appears to directly bind p65, we also observed a decreased phosphorylation of p65 at serine 536, an event mediating the transcriptional activity of DNA-bound p65. Inhibition of the NF-kB pathway by parthenolide also resulted in very significant inhibition of one of its well-known downstream target genes, ICAM-1 (CD54) at mRNA, protein and surface expression levels. Whether reduced ICAM-1 expression affects the biology of AML cells is as yet unknown. However, given the known role of ICAM-1 in integrin signaling, we propose that loss of ICAM-1 via NF-kB inhibition may impair the ability of AML cells to interact with their environment. Taken together, this study further elucidates the mechanisms by which PTL mediates pro-apoptotic activity in primary AML cells. PTL induces activation of p53 pathway and therefore knockdown of p53 by shRNA results in partial rescue from PTL mediated cell death. PTL also inhibits the NF-kB pathway, which includes binding of PTL to both IKK-beta and RelA/p65, which leads to decreased phosphorylation of IkB-alpha and reduced DNA binding of p65. In addition, we have discovered the ICAM-1 expression in AML cells is regulated by NF-kB, and that loss of NF-kB DNA binding activity results in loss of ICAM-1 expression. Disclosures: No relevant conflicts of interest to declare.


Oncotarget ◽  
2016 ◽  
Vol 7 (48) ◽  
pp. 78281-78296 ◽  
Author(s):  
Vinod K. Nelson ◽  
Asif Ali ◽  
Naibedya Dutta ◽  
Suvranil Ghosh ◽  
Manas Jana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document