scholarly journals Inhibition of DNA Binding by Differential Sumoylation of Heat Shock Factors

2006 ◽  
Vol 26 (3) ◽  
pp. 955-964 ◽  
Author(s):  
Julius Anckar ◽  
Ville Hietakangas ◽  
Konstantin Denessiouk ◽  
Dennis J. Thiele ◽  
Mark S. Johnson ◽  
...  

ABSTRACT Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.

1995 ◽  
Vol 15 (10) ◽  
pp. 5268-5278 ◽  
Author(s):  
A Nakai ◽  
Y Kawazoe ◽  
M Tanabe ◽  
K Nagata ◽  
R I Morimoto

Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythroblast cell line HD6, the lymphoblast cell line MSB, and embryo fibroblasts, and yet its DNA-binding activity is induced only upon exposure of HD6 cells to heat shock. Acquisition of HSF3 DNA-binding activity in HD6 cells is accompanied by oligomerization from a non-DNA-binding dimer to a DNA-binding trimer, whereas the effect of heat shock on HSF1 is oligomerization of an inert monomer to a DNA-binding trimer. Induction of HSF3 DNA-binding activity is delayed compared with that of HSF1. As occurs for HSF1, heat shock leads to the translocation of HSF3 to the nucleus. HSF exhibits the properties of a transcriptional activator, as judged from the stimulatory activity of transiently overexpressed HSF3 measured by using a heat shock element-containing reporter construct and as independently assayed by the activity of a chimeric GAL4-HSF3 protein on a GAL4 reporter construct. These results reveal that HSF3 is negatively regulated in avian cells and acquires DNA-binding activity in certain cells upon heat shock.


1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


1992 ◽  
Vol 12 (9) ◽  
pp. 4104-4111
Author(s):  
L Sistonen ◽  
K D Sarge ◽  
B Phillips ◽  
K Abravaya ◽  
R I Morimoto

Hemin induces nonterminal differentiation of human K562 erythroleukemia cells, which is accompanied by the expression of certain erythroid cell-specific genes, such as the embryonic and fetal globins, and elevated expression of the stress genes hsp70, hsp90, and grp78/BiP. Previous studies revealed that, as during heat shock, transcriptional induction of hsp70 in hemin-treated cells is mediated by activation of heat shock transcription factor (HSF), which binds to the heat shock element (HSE). We report here that hemin activates the DNA-binding activity of HSF2, whereas heat shock induces predominantly the DNA-binding activity of a distinct factor, HSF1. This constitutes the first example of HSF2 activation in vivo. Both hemin and heat shock treatments resulted in equivalent levels of HSF-HSE complexes as analyzed in vitro by gel mobility shift assay, yet transcription of the hsp70 gene was stimulated much less by hemin-induced HSF than by heat shock-induced HSF. Genomic footprinting experiments revealed that hemin-induced HSF and heat shock-induced HSF, HSF2, and HSF1, respectively, occupy the HSE of the human hsp70 promoter in a similar yet not identical manner. We speculate that the difference in occupancy and/or in the transcriptional abilities of HSF1 and HSF2 accounts for the observed differences in the stimulation of hsp70 gene transcription.


1990 ◽  
Vol 9 (1) ◽  
pp. 69-76 ◽  
Author(s):  
A. Wilhelmsson ◽  
S. Cuthill ◽  
M. Denis ◽  
A.C. Wikström ◽  
J.A. Gustafsson ◽  
...  

1995 ◽  
Vol 15 (10) ◽  
pp. 5552-5562 ◽  
Author(s):  
E Roulet ◽  
M T Armentero ◽  
G Krey ◽  
B Corthésy ◽  
C Dreyer ◽  
...  

The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.


Oncotarget ◽  
2016 ◽  
Vol 7 (48) ◽  
pp. 78281-78296 ◽  
Author(s):  
Vinod K. Nelson ◽  
Asif Ali ◽  
Naibedya Dutta ◽  
Suvranil Ghosh ◽  
Manas Jana ◽  
...  

2009 ◽  
Vol 103 (6) ◽  
pp. 890-898 ◽  
Author(s):  
Woon Yong Kwon ◽  
Gil Joon Suh ◽  
Kyung Su Kim ◽  
You Hwan Jo ◽  
Jae Hyuk Lee ◽  
...  

Heat shock protein 70 (HSP70) is reported as the main factor responsible for the beneficial effects of glutamine (GLN) and as a negative regulator of high mobility group box protein-1 (HMGB-1) expression. Our aim was to determine whether GLN attenuates acute lung injury (ALI) by the inhibition of HMGB-1 expression during sepsis. Male Sprague–Dawley rats were subjected to caecal ligation and puncture (CLP) to induce sepsis. GLN or saline was administered through tail vein 1 h after CLP. Then, quercetin (Q), an inhibitor of HSP70, was utilised to assess the role of the enhanced HSP70. We observed the survival of the subjects. At 24 h post-CLP, we measured lung HSP70, phosphorylated heat shock factor-1 (HSF-1-p) and HMGB-1 expressions, NF-κB DNA-binding activity and ALI occurrence. We also measured serum HSP70, IL-6 and HMGB-1 concentrations. GLN improved survival during sepsis. In GLN-treated rats, lung HSP70 and HSF-1-p expressions were enhanced, lung HMGB-1 expression and NF-κB DNA-binding activity were suppressed, and ALI was attenuated. Furthermore, in GLN-administered rats, serum HSP70 concentration was higher, and serum IL-6 and HMGB-1 concentrations were lower than those in non-treated rats. Q inhibited the enhancement of HSP70 and HSF-1-p expressions and abrogated the GLN-mediated benefits. In conclusion, GLN attenuated ALI and improved survival by the inhibition of HMGB-1 expression during sepsis in rats. These benefits were associated with the enhancement of HSP70 expression by GLN.


Sign in / Sign up

Export Citation Format

Share Document