Structural Analysis of an Acidic Polysaccharide from Tremella mesenterica NRRL Y-6158

1973 ◽  
Vol 51 (3) ◽  
pp. 219-224 ◽  
Author(s):  
C. G. Fraser ◽  
H. J. Jennings ◽  
P. Moyna

An acidic polysaccharide has been isolated from the culture medium of T. mesenterica NRRL Y-6158. The heteropolymer contained D-xylose, D-mannose, D-glucuronic acid, and O-acetyl in the molar ratios of 7:5:1:0.7, respectively. Methylation analysis of the heteropolymer indicated that it was essentially a 1 → 3-α-linked mannopyranose backbone having approximately 80% of the backbone units substituted, thus forming a very highly branched structure. The substituents on the backbone were found to be D-glucopyranosyluronic acid end-group, β-linked to the O-2 positions of the mannopyranose units, and 2-O-β-D-linked xylopyranose side-chains, linked both to the O-2 and O-4 positions of the mannopyranose backbone. The methylation analysis suggests that these side-chains are probably two or three xylopyranose units long, although a limited variation in the length of the side-chains is a possibility.

1990 ◽  
Vol 68 (2) ◽  
pp. 323-328 ◽  
Author(s):  
Salah M. Abdel-Kader ◽  
Mohamady A. Issa ◽  
Mohamed A. El-Shafei

An extracellular acidic polysaccharide, elaborated by Bacilluspolymyxa, was composed of D-glucose, D-mannose, D-galactose, and D-glucuronic acid (approximate molar ratio of 4:3:1:1). Methylation and fragmentation analysis by partial acid hydrolysis indicated that the polysaccharide had a complicated, highly branched structure, consisting mainly of β(1 → 3) and (1 → 4) D-glycosidic linkages. The backbone chain containing D-glucose, D-mannose, and D-glucuronic acid residues is attached at the C-4, C-3, and C-4 positions, respectively, one out of every three glucose residues being substituted at the C-2 position to form two kinds of branches at the C-2 and C-4 positions, with side chains of single or a few carbohydrate units that are terminated by D-glucose and (or) D-mannose residues. Keywords: acidic polysaccharide, Bacilluspolymyxa.


Holzforschung ◽  
2002 ◽  
Vol 56 (6) ◽  
pp. 607-614 ◽  
Author(s):  
C. Laine ◽  
T. Tamminen ◽  
A. Vikkula ◽  
T. Vuorinen

Summary In modern structural analysis of complex mixtures of wood polysaccharides, methylation analysis is still a valuable and powerful tool for linkage analysis. In this paper, methylation analysis is described for the procedure methylation, methanolysis, silylation and GC/MS. The retention time indexes for the partly methylated methyl glycosides of the relevant wood polysaccharides are listed together with the ratios of the isomers of the different structural units. A calculation model for relative molar response factors is suggested based on a published model for FID detection and on experimental data. Tested for oligosaccharides of known structure including xylotetraose, mannotriose and 63, 64-α-D-galactosyl-mannopentaose, the model gives reproducible and sufficiently correct results. The fate of xylose units substituted with 4-O-methyl glucuronic acid at position 2 is investigated with a model compound.


1957 ◽  
Vol 35 (2) ◽  
pp. 108-114 ◽  
Author(s):  
J. Schmorak ◽  
C. T. Bishop ◽  
G. A. Adams

Graded acid hydrolysis of a soluble wheat bran hemicellulose containing L-arabinose (50%), D-xylose (38.5%), and D-glucuronic acid (9.0%) preferentially removed the L-arabinose giving an insoluble acidic polysaccharide in approximately 25% yield by weight. Methylation studies, periodate oxidation data, and hypoiodite end group estimations showed that the degraded polysaccharide was composed of repeating units of 7-8 D-xylopyranose residues joined by β,1 → 4 linkages. To this repeating unit, one D-glucuronic acid unit was attached by a 1 → 2 glycosidic bond. The cellulolytic enzyme of Myrotheciumverrucaria, which is specific for β,1 → 4 glycosidic linkages, hydrolyzed the degraded polysaccharide although it had no effect on the parent hemicellulose


1981 ◽  
Vol 27 (6) ◽  
pp. 599-603 ◽  
Author(s):  
Svein Valla ◽  
Johs. Kjosbakken

An extracellular, acidic polysaccharide has been isolated from the culture medium of a spontaneous cellulose-negative strain of Acetobacter xylinum. Chemical analysis shows that the polymer is composed of glucose, mannose, rhamnose, and glucuronic acid in a molar ratio approximating 3:1:1:1. No evidence for the presence of cellobiose units as structural parts in the polysaccharide has been found.


1986 ◽  
Vol 51 (10) ◽  
pp. 2250-2258 ◽  
Author(s):  
Rudolf Kohn ◽  
Zdena Hromádková ◽  
Anna Ebringerová

Several fractions of acid hemicelluloses isolated from rye bran were characterized by molar ratios of saccharides (D-Xyl, L-Ara, D-Glc, D-Gal) and 4-O-methyl-D-glucuronic acid and protein content. Binding of Pb2+ and Cu2+ ions to these acid polysaccharides was considered according to function (M)b = f([M2+]f), expressing the relationship between the amount of metal (M)b bound to 1 g of the substance and the concentration of free ions [M2+]f in the equilibrium solution and according to the association degree β of these cations with carboxyl groups of uronic acid at a stoichiometric ratio of both components in the system under investigation. Acid hemicelluloses contained only a very small portion of uronic acid ((COOH) 0.05-0.18 mmol g-1); the model polysaccharide, 4-O-methyl-D-glucurono-D-xylan of beech, was substantially richer in uronic acid content ((COOH) 0.73 mmol g-1). Consequently, the amount of lead and copper bound to acid hemicelluloses is very small ((M)b 0.017-0.025 mmol g-1) at [M2+]f = 0.10 mmol l-1. On the other hand, much greater amount of cations ((M)f 0.09-0.10 mmol g-1) was bound to the glucuronoxylan. The association degree β was like with the majority of samples (β = 0.31-0.38). The amount of lead and copper(II) bound to acid hemicelluloses from rye bran is several times lower than that bound to dietary fiber isolated from vegetables (cabbage, carrot), rich in pectic substances.


1954 ◽  
Vol 32 (11) ◽  
pp. 999-1004 ◽  
Author(s):  
C. T. Bishop ◽  
G. A. Adams ◽  
E. O. Hughes

A complex polysaccharide has been isolated from the fresh-water alga, Anabaena cylindrica, grown in a synthetic culture medium. Prolonged acid hydrolysis yielded glucose, xylose, glucuronic acid, galactose, rhamnose, and arabinose in a molar ratio of 5: 4: 4: 1: 1: 1. Chemical fractionations of the polysaccharide material from solution in cupriethylenediamine, and of its acetate from organic solvents indicated chemical homogeneity.


2005 ◽  
Vol 70 (10) ◽  
pp. 4096-4106 ◽  
Author(s):  
Manuela Tosin ◽  
Colin O'Brien ◽  
Geraldine M. Fitzpatrick ◽  
Helge Müller-Bunz ◽  
W. Kenneth Glass ◽  
...  

1989 ◽  
Vol 67 (6) ◽  
pp. 1038-1050 ◽  
Author(s):  
James C. Richards ◽  
Malcolm B. Perry ◽  
Peter J. Kniskern

The structure of the specific capsular polysaccharide produced by Streptococcuspneumoniae type 22F (American type 22) was investigated by high-field 1H and 13C nuclear magnetic resonance spectroscopy, composition, methylation analysis, and periodate oxidation studies. The polysaccharide was found to be a high molecular weight acidic polymer composed of D-glucose, D-galactose, D-glucuronic acid, and L-rhamnose residues to form a regular repeating hexasaccharide unit having the structure[Formula: see text]in which the β-L-rhamnopyranosyl residues were substituted by O-acetyl groups in 80% of the repeating units. The 1H and 13C nmr resonances of the O-deacetylated type 22F polysaccharide were completely assigned by application of two-dimensional homo- and heteronuclear chemical shift correlation techniques. Keywords: Streptococcuspneumoniae polysaccharide, NMR analysis.


Sign in / Sign up

Export Citation Format

Share Document