Titration Study of Guaiarcol Oxidation by Horseradish Peroxidase

1975 ◽  
Vol 53 (6) ◽  
pp. 649-657 ◽  
Author(s):  
Marius Santimone

Titration of guaiacol by hydrogen peroxide in the presence of a catalytic amount of horseradish peroxidase shows that the reduction of hydrogen peroxide proceeds by the abstraction of two electrons from a guaiacol molecule. In the same way, it can be demonstrated that 0.5 mol of guaiacol can reduce, at low temperature, 1 mol of peroxidase compound I to compound II. Moreover, the reaction between equal amounts of compound I and guaiacol at low temperature produces the native enzyme. A reaction scheme is proposed which postulates that two electrons are transferred from guaiacol to compound I giving ferriperoxidase and oxidized guaiacol with the intermediary formation of compound II. The direct two-electron transfer from guaiacol to compound I without a dismutation of product free radicals must be considered as an exception to the general mechanism involving a single-electron transfer.

1999 ◽  
Vol 380 (6) ◽  
Author(s):  
M. García-Moreno ◽  
M. Moreno-Conesa ◽  
J.N. Rodríguez-López ◽  
F. García-Cánovas ◽  
R. Varón

AbstractThe catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-


1978 ◽  
Vol 56 (22) ◽  
pp. 2844-2852 ◽  
Author(s):  
H. Brian Dunford ◽  
W. Donald Hewson ◽  
Håkan Steiner

The kinetics of the reactions of hydrogen peroxide and cyanide with native horseradish peroxidase, as well as reactions of compounds I and II with ferrocyanide have been studied in ordinary water and in deuterium oxide at 25 °C and ionic strength 0.11 using a stopped-flow apparatus. Rate constants for all reactions were measured over a wide range of acidity in both solvents from which equilibrium and kinetic isotope effects were evaluated. Protonation of an ionizable group on the enzyme with a pKa value of 4.15 ± 0.05 in water inhibits the reactions with both hydrogen peroxide and cyanide. A significant kinetic isotope effect, kH/kD = 1.6 ± 0.1, was measured for compound I formation whereas no significant kinetic isotope effect was found for cyanide binding. On the basis of these findings, a partial mechanism for compound I formation is proposed in which the group of pKa 4.15 plays a crucial role. The pH dependencies of the ferrocyanide reaction in the pH interval 4.5–10.8 confirmed the role of an acid group with a pKa of 5.2 for compound I and for compound II a pKa of 8.6 and another with a value lower than that encompassed by the pH range of the study. Equilibrium isotope effects were found but no kinetic isotope effects for either the reaction of compound I or of compound II This suggests that there are no rate-limiting proton transfers in the reactions between ferrocyanide and compounds I and II of horseradish peroxidase. The only reducing substrates which exhibit positive kH/kD values possess a labile proton.


1994 ◽  
Vol 301 (2) ◽  
pp. 335-341 ◽  
Author(s):  
M J Rodríguez Marañón ◽  
D Mercier ◽  
R B van Huystee ◽  
M J Stillman

The electronic structures of the cationic isoenzyme of peanut peroxidase, horseradish peroxidase (isoenzyme C) and bovine liver catalase are compared through analysis of their optical absorption and magnetic c.d. (m.c.d.) spectral properties. The spectral data for the native resting states and compounds I and II of peanut peroxidase (PeP) are reported. The absorption and m.c.d. data for the native PeP exhibit bands characteristic of the high-spin ferric haem. The absorption spectrum of PeP compound I closely resembles that observed for the HRP compound I species. The m.c.d. data for PeP I clearly identifies that ring oxidation has occurred. One-electron reduction forms the PeP compound II species. The absorption and m.c.d. spectra recorded for PeP II exhibit the well-resolved spectral characteristics previously observed for both HRP compound II and catalase compound II. The spectral data of PeP with HRP and catalase are compared. The data clearly indicate that the m.c.d. spectral patterns of both plant peroxidases (PeP and HRP) are very similar and, therefore, the electronic structures of their resting states, and as well their primary and secondary compounds, must be similar. The m.c.d. data suggest that, while the compound I species of PeP and HRP belong to one electronic class, catalase compound I belongs to a different class. These data emphasize how the ground states of these two classes of oxidized haem, may be characterized as predominantly 2A2u (PeP I and HRP I) or 2A1u (catalase I). Peanut peroxidase is the second plant peroxidase for which the electronic structure of the compound I intermediate has been studied using the m.c.d. technique. The similarities with horseradish peroxidase allow us to suggest that plant peroxidases may operate by the same general mechanism, in spite of the low degree of sequence similarity between their polypeptide chains.


2019 ◽  
Vol 58 (13) ◽  
pp. 8263-8266 ◽  
Author(s):  
Nami Fukui ◽  
Xiao-Xi Li ◽  
Wonwoo Nam ◽  
Shunichi Fukuzumi ◽  
Hiroshi Fujii

1994 ◽  
Vol 72 (10) ◽  
pp. 2159-2162 ◽  
Author(s):  
Weimei Sun ◽  
Xiaoying Ji ◽  
Larry J. Kricka ◽  
H. Brian Dunford

The rate constants for the reactions of horseradish peroxidase compound I (k1) and compound II (k2) with three 4-substituted arylboronic acids, which enhance chemiluminescence in the horseradish peroxidase catalyzed oxidation of luminol by hydrogen peroxide, were determined at pH 8.6, total ionic strength 0.11 M, using stopped-flow kinetic measurements. For comparison, the rate constants of the reactions of 4-iodophenol with compounds I and II were also determined under the same experimental conditions. The three arylboronic acid derivatives and their rate constants are: 4-biphenylboronic acid, k1 = (1.21 ± 0.08) × 106 M−1 s−1, k2 = (4.6 ± 0.2) × 105 M−1 s−1; 4-bromophenylboronic acid, k1 = (5.5 ± 0.2) × 104 M−1 s−1, k2 = (3.6 ± 0.2) × 104 M−1 s−1; and 4-iodophenylboronic acid, k1 = (1.1 ± 0.2) × 105 M−1 s−1, k2 = (1.3 ± 0.1) × 104 M−1 s−1. 4-Biphenylboronic acid, which shows comparable luminescent enhancement to 4-iodophenol, has the highest reactivity in the reduction of both compounds I and II among the three arylboronic acid derivatives tested.


1996 ◽  
Vol 43 (4) ◽  
pp. 673-678 ◽  
Author(s):  
L Gebicka ◽  
J L Gebicki

The reactions of two heme peroxidases, horseradish peroxidase and lactoperoxidase and their compounds II (oxoferryl heme intermediates, Fe(IV) = O or ferric protein radical Fe(III)R.) and compounds III (resonance hybrids [Fe(III)-O2-. Fe(II)-O2] with superoxide radical anion generated enzymatically or radiolytically, and with hydroxyl radicals generated radiolytically, were investigated. It is suggested that only the protein radical form of compound II of lactoperoxidase reacts with superoxide, whereas compound II of horseradish peroxidase, which exists only in oxoferryl form, is unreactive towards superoxide. Compound III of the investigated peroxidases does not react with superoxide. The lactoperoxidase activity loss induced by hydroxyl radicals is closely related to the loss of the ability to form compound I (oxoferryl porphyrin pi-cation radical, Fe(IV) = O(Por+.) or oxoferryl protein radical Fe(IV) = O(R.)). On the other hand, the modification of horseradish peroxidase induced by hydroxyl radicals has been reported to cause also restrictions in substrate binding (Gebicka, L. & Gebicki, J.L., 1996, Biochimie 78, 62-65). Nevertheless, it has been found that only a small fraction of hydroxyl radicals generated homogeneously does inactivate the enzymes.


1973 ◽  
Vol 51 (4) ◽  
pp. 588-596 ◽  
Author(s):  
R. Roman ◽  
H. B. Dunford

The kinetics of the oxidation of sulfite and nitrite by horseradish peroxidase compounds I and II have been studied as a function of pH at 25° and ionic strength 0.11. The pH dependence of the rate of the reaction between compound I and sulfite over the pH range 2–7 is interpreted in terms of two ground state enzyme dissociations with pka values of 5.1 and 3.3, and that for the compound II reaction with sulfite in terms of a single ground state enzyme dissociation with a pKa value of 3.9. Whereas the reaction between compound I and sulfite produces the native enzyme without the intermediate formation of compound II, the reaction of compound I with nitrite yields compound II. The second-order rate constants for the reactions of compounds I and II with nitrite increase linearly with increasing hydrogen ion concentration over the pH range 6–8.


Sign in / Sign up

Export Citation Format

Share Document