Binding of a 30-kDa protein to the pyruvate kinase gene of Neurospora crassa

1988 ◽  
Vol 66 (9) ◽  
pp. 958-966
Author(s):  
Medhavinee R. Devchand ◽  
M. Kapoor

Extracts of a wild-type strain of Neurospora crassa, electrophoresed on SDS–polyacrylamide gels and electroblotted onto nitrocellulose sheets, were hybridized to an end-labelled pyruvate kinase (PK) gene fragment containing the 5′ noncoding sequence and a large part of the coding region. A 30-kDa protein was found to bind strongly to the PK gene DNA, while binding weakly to plasmid pUC12 DNA and to total N. crassa DNA. Probing of blots with individual restriction fragments derived from the PK gene showed that the protein binding occurred primarily to the 5′ noncoding region. Nonspecific DNA from pUC12, PK gene DNA from the recombinant plasmid pNP460 (pUC12 containing a 1.8-kilobase EcoRI insert of the PK gene DNA), along with a 0.7-kilobase EcoRI-AccI restriction fragment containing the 5′ flanking region, were used in filter-binding experiments to analyze the kinetics of binding. Formation of protein–DNA complexes was demonstrated by monitoring the electrophoretic mobility of this fragment on nondenaturing gels.

2000 ◽  
Vol 74 (15) ◽  
pp. 6975-6983 ◽  
Author(s):  
Julie J. Wirth ◽  
Li Chen ◽  
Michele M. Fluck

ABSTRACT BALB/c mice that developed tumors 7 to 8 months following neonatal infection by polyomavirus (PYV) wild-type strain A2 were characterized with respect to the abundance and integrity of the viral genome in the tumors and in 12 nontumorous organs. These patterns were compared to those found in tumor-free mice infected in parallel. Six mice were analyzed in detail including four sibling females with mammary gland tumors. In four of five mammary gland tumors, the viral genome had undergone a unique deletion and/or rearrangement. Three tumor-resident genomes with an apparently intact large T coding region were present in abundant levels in an unintegrated state. Two of these had undergone deletions and rearrangements involving the capsid genes and therefore lacked the capacity to produce live virus. In the comparative organ survey, the tumors harboring replication-competent genomes contained by far the highest levels of genomes of any tissue. However, the levels of PYV genomes in other organs were elevated by up to 1 to 2 orders of magnitude compared to those detected in the same organs of tumor-free mice. The genomes found in the nontumorous organs had the same rearrangements as the genomes residing in the tumors. The original wild-type genome was detected at low levels in a few organs, particularly in the kidneys. The data indicate that a systemic increase in the level of viral genomes occurred in conjunction with the induction of tumors by PYV. The results suggest two novel hypotheses: (i) that genomes may spread from the tumors to the usual PYV target tissues and (ii) that this dissemination may take place in the absence of capsids, providing an important path for a virus to escape from the immune response. This situation may offer a useful model for the spread of HPV accompanying HPV-induced oncogenesis.


1987 ◽  
Vol 7 (9) ◽  
pp. 3168-3177
Author(s):  
M G Schechtman

The most distal known gene on Neurospora crassa linkage group VR, his-6, was cloned. A genomic walk resulted in isolation of the telomere at VR. It was obtained from a library in which the endmost nucleotides of the chromosome had not been removed by nuclease treatment before being cloned, and mapping indicates that the entire chromosome end has probably been cloned. Sequences homologous to the terminal 2.5 kilobases of DNA from VR from these Oak Ridge N. crassa strains are found at other sites in the genome. To characterize these sites, I crossed an Oak Ridge-derived his-6 strain with a wild-type strain of different genetic background (Mauriceville) and characterized the hybridization patterns seen in the progeny. It appears that the sequences homologous to the VR terminus are found at genetically different sites in the two parental strains, and no hybridization to the VR telomere from Mauriceville was detected. The other genomic copies identified in the Oak Ridge parent were not telomeres. I suggest that any repeating sequence blocks found immediately adjacent to the VR terminus in Oak Ridge strains must be small and that the repeating element identified in that background may be an N. crassa transposable element integrated near the the chromosome end at VR.


1986 ◽  
Vol 6 (2) ◽  
pp. 201-208
Author(s):  
M. Devchand ◽  
M. Kapoor

In Neurospora crassa, there is a single pyruvate kinase (PK) consisting of four identical subunits of ∼60k daltons. Northern and dot blot hybridization studies, using most of the yeast pyruvate kinase gene as a probe, suggest the presence of two distinct mRNA species for pyruvate kinase, separable on the basis of the length of their polyadenylated tails, by oligo(dT)cellulose chromatography. These messages are present in polysomes, immuno-precipitated by anti-PK antibodies, indicating probable translation in vivo. Fractions containing both messages were translated in vitro in the heterologous systems as well as in a homologous N. crassa lysate, the newly-synthesized PK being detected by immunoadsorption. Protection studies using S1-nuclease suggest no major structural differences in the 5′-untranslated and most of the coding regions of the two messages.


1999 ◽  
Vol 181 (22) ◽  
pp. 7087-7097 ◽  
Author(s):  
Michiko M. Nakano ◽  
Yi Zhu ◽  
Koki Haga ◽  
Hirofumi Yoshikawa ◽  
Abraham L. Sonenshein ◽  
...  

ABSTRACT The Bacillus subtilis ResD-ResE two-component signal transduction system is essential for aerobic and anaerobic respiration. A spontaneous suppressor mutant that expresses ResD-controlled genes and grows anaerobically in the absence of the ResE histidine kinase was isolated. In addition, aerobic expression of ResD-controlled genes in the suppressed strain was constitutive and occurred at a much higher level than that observed in the wild-type strain. The suppressing mutation, which mapped to pgk, the gene encoding 3-phosphoglycerate kinase, failed to suppress a resDmutation, suggesting that the suppressing mutation creates a pathway for phosphorylation of the response regulator, ResD, which is independent of the cognate sensor kinase, ResE. The pgk-1mutant exhibited very low but measurable 3-phosphoglycerate kinase activity compared to the wild-type strain. The results suggest that accumulation of a glycolytic intermediate, probably 1,3-diphosphoglycerate, is responsible for the observed effect of thepgk-1 mutation on anaerobiosis of resE mutant cells.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Kiyoshi Onai ◽  
Hideaki Nakashima

Ten cysteine auxotrophs of Neurospora crassa were examined with regard to the period lengths of their circadian conidiation rhythms. One of the these cysteine auxotrophs, cys-9, showed dramatic changes in the circadian conidiation rhythm. At 10 μm methionine, the cys-9 mutant had a period length that was 5 hr shorter than that of the wild-type strain during the first 3 days after transfer to continuous darkness. At this concentration of methionine, the period length was unstable after the fourth day and varied widely from 11 to 31 hr. In contrast, other cysteine auxotrophs did not show such instability of the period length at any of the concentrations of methionine tested. Furthermore, only the cys-9 mutant exhibited partial loss of the capacity for temperature compensation of the period length. With regard to cold-induced phase-shifting of the circadian conidiation rhythm, the cys-9 mutant was more sensitive than the wild-type strain to low temperature. The cys-9  + gene was cloned and was found to encode NADPH-dependent thioredoxin reductase. These results indicate that mutation of the gene for thioredoxin reductase results in abnormal expression of the circadian conidiation rhythm in N. crassa.


1987 ◽  
Vol 7 (3) ◽  
pp. 1122-1128
Author(s):  
R H Davis ◽  
L V Hynes ◽  
P Eversole-Cire

Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.


1987 ◽  
Vol 7 (3) ◽  
pp. 1122-1128 ◽  
Author(s):  
R H Davis ◽  
L V Hynes ◽  
P Eversole-Cire

Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document