scholarly journals A Mutation in the 3-Phosphoglycerate Kinase Gene Allows Anaerobic Growth of Bacillus subtilis in the Absence of ResE Kinase

1999 ◽  
Vol 181 (22) ◽  
pp. 7087-7097 ◽  
Author(s):  
Michiko M. Nakano ◽  
Yi Zhu ◽  
Koki Haga ◽  
Hirofumi Yoshikawa ◽  
Abraham L. Sonenshein ◽  
...  

ABSTRACT The Bacillus subtilis ResD-ResE two-component signal transduction system is essential for aerobic and anaerobic respiration. A spontaneous suppressor mutant that expresses ResD-controlled genes and grows anaerobically in the absence of the ResE histidine kinase was isolated. In addition, aerobic expression of ResD-controlled genes in the suppressed strain was constitutive and occurred at a much higher level than that observed in the wild-type strain. The suppressing mutation, which mapped to pgk, the gene encoding 3-phosphoglycerate kinase, failed to suppress a resDmutation, suggesting that the suppressing mutation creates a pathway for phosphorylation of the response regulator, ResD, which is independent of the cognate sensor kinase, ResE. The pgk-1mutant exhibited very low but measurable 3-phosphoglycerate kinase activity compared to the wild-type strain. The results suggest that accumulation of a glycolytic intermediate, probably 1,3-diphosphoglycerate, is responsible for the observed effect of thepgk-1 mutation on anaerobiosis of resE mutant cells.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Liu ◽  
Xue Bai ◽  
Yan Li ◽  
Haikun Zhang ◽  
Xiaoke Hu

Abstract Background A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. Results In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. Conclusions Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 115-123
Author(s):  
James H Morrissey ◽  
Steven Wheeler ◽  
William F Loomis

ABSTRACT Seventeen independently isolated pigmentless (white) mutations in Dictyostelium discoideum are all recessive and fall into three complementation groups identifying two new whi loci in addition to the previously characterized whiA locus. whiB and whiC map to linkage groups III and IV, respectively. In addition, it was discovered that our laboratory stock of NC4, the wild-type strain from which these mutants were derived, has spontaneously lost the ability to grow on Bacillus subtilis. This new mutation, bsgB500, maps to linkage group VII and is not allelic to bsgA. bsgB500 is the first spontaneously derived mutation in D. discoideum that can be used to select heterozygous diploids, and for the first time allows genetic analysis to be routinely performed on strains derived from an unmutagenized background.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Jan Kampf ◽  
Jan Gerwig ◽  
Kerstin Kruse ◽  
Robert Cleverley ◽  
Miriam Dormeyer ◽  
...  

ABSTRACT Biofilm formation by Bacillus subtilis requires the expression of genes encoding enzymes for extracellular polysaccharide synthesis and for an amyloid-like protein. The master regulator SinR represses all the corresponding genes, and repression of these key biofilm genes is lifted when SinR interacts with its cognate antagonist proteins. The YmdB phosphodiesterase is a recently discovered factor that is involved in the control of SinR activity: cells lacking YmdB exhibit hyperactive SinR and are unable to relieve the repression of the biofilm genes. In this study, we have examined the dynamics of gene expression patterns in wild-type and ymdB mutant cells by microfluidic analysis coupled to time-lapse microscopy. Our results confirm the bistable expression pattern for motility and biofilm genes in the wild-type strain and the loss of biofilm gene expression in the mutant. Moreover, we demonstrated dynamic behavior in subpopulations of the wild-type strain that is characterized by switches in sets of the expressed genes. In order to gain further insights into the role of YmdB, we isolated a set of spontaneous suppressor mutants derived from ymdB mutants that had regained the ability to form complex colonies and biofilms. Interestingly, all of the mutations affected SinR. In some mutants, large genomic regions encompassing sinR were deleted, whereas others had alleles encoding SinR variants. Functional and biochemical studies with these SinR variants revealed how these proteins allowed biofilm gene expression in the ymdB mutant strains. IMPORTANCE Many bacteria are able to choose between two mutually exclusive lifestyles: biofilm formation and motility. In the model bacterium Bacillus subtilis, this choice is made by each individual cell rather than at the population level. The transcriptional repressor SinR is the master regulator in this decision-making process. The regulation of SinR activity involves complex control of its own expression and of its interaction with antagonist proteins. We show that the YmdB phosphodiesterase is required to allow the expression of SinR-repressed genes in a subpopulation of cells and that such subpopulations can switch between different SinR activity states. Suppressor analyses revealed that ymdB mutants readily acquire mutations affecting SinR, thus restoring biofilm formation. These findings suggest that B. subtilis cells experience selective pressure to form the extracellular matrix that is characteristic of biofilms and that YmdB is required for the homeostasis of SinR and/or its antagonists.


2006 ◽  
Vol 188 (21) ◽  
pp. 7387-7395 ◽  
Author(s):  
Sigal Lechno-Yossef ◽  
Qing Fan ◽  
Shigeki Ehira ◽  
Naoki Sato ◽  
C. Peter Wolk

ABSTRACT Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.


2017 ◽  
Vol 85 (8) ◽  
Author(s):  
Gilberto Hideo Kaihami ◽  
Leandro Carvalho Dantas Breda ◽  
José Roberto Fogaça de Almeida ◽  
Thays de Oliveira Pereira ◽  
Gianlucca Gonçalves Nicastro ◽  
...  

ABSTRACT Two-component systems are widespread in bacteria, allowing adaptation to environmental changes. The classical pathway is composed of a histidine kinase that phosphorylates an aspartate residue in the cognate response regulator (RR). RRs lacking the phosphorylatable aspartate also occur, but their function and contribution during host-pathogen interactions are poorly characterized. AtvR (PA14_26570) is the only atypical response regulator with a DNA-binding domain in the opportunistic pathogen Pseudomonas aeruginosa. Macrophage infection with the atvR mutant strain resulted in higher levels of tumor necrosis factor alpha secretion as well as increased bacterial clearance compared to those for macrophages infected with the wild-type strain. In an acute pneumonia model, mice infected with the atvR mutant presented increased amounts of proinflammatory cytokines, increased neutrophil recruitment to the lungs, reductions in bacterial burdens, and higher survival rates in comparison with the findings for mice infected with the wild-type strain. Further, several genes involved in hypoxia/anoxia adaptation were upregulated upon atvR overexpression, as seen by high-throughput transcriptome sequencing (RNA-Seq) analysis. In addition, atvR was more expressed in hypoxia in the presence of nitrate and required for full expression of nitrate reductase genes, promoting bacterial growth under this condition. Thus, AtvR would be crucial for successful infection, aiding P. aeruginosa survival under conditions of low oxygen tension in the host. Taken together, our data demonstrate that the atypical response regulator AtvR is part of the repertoire of transcriptional regulators involved in the lifestyle switch from aerobic to anaerobic conditions. This finding increases the complexity of regulation of one of the central metabolic pathways that contributes to Pseudomonas ubiquity and versatility.


1998 ◽  
Vol 180 (6) ◽  
pp. 1375-1380 ◽  
Author(s):  
Shu Ishikawa ◽  
Kunio Yamane ◽  
Junichi Sekiguchi

ABSTRACT The predicted amino acid sequence of Bacillus subtilis ycbQ (renamed cwlJ) exhibits high similarity to those of the deduced C-terminal catalytic domain of SleBs, the specific cortex-hydrolyzing enzyme of B. cereus and the deduced one of B. subtilis. We constructed acwlJ::lacZ fusion in the B. subtilischromosome. The β-galactosidase activity and results of Northern hybridization and primer extension analyses of the cwlJgene indicated that it is transcribed by EςE RNA polymerase. cwlJ-deficient spores responded to bothl-alanine and AGFK, the A 580 values of spore suspensions decreased more slowly than in the case of the wild-type strain, and the mutant spores released less dipicolinic acid than did those of the wild-type strain during germination. However, the mutant spores released only slightly less hexosamine than did the wild-type spores. In contrast, B. subtilis sleB spores did not release hexosamine at a significant level. While cwlJand sleB spores were able to germinate, CJSB (cwlJ sleB) spores could not germinate but exhibited initial germination reactions, e.g., partial decrease inA 580 and slow release of dipicolinic acid. CJSB spores became slightly gray after 6 h in the germinant, but their refractility was much greater than that of sleB mutant spores. The roles of the sleB and cwlJmutations in germination and spore maturation are also discussed.


2014 ◽  
Vol 58 (9) ◽  
pp. 5181-5190 ◽  
Author(s):  
Quei Yen Lin ◽  
Yi-Lin Tsai ◽  
Ming-Che Liu ◽  
Wei-Cheng Lin ◽  
Po-Ren Hsueh ◽  
...  

ABSTRACTPolymyxins, which are increasingly being used to treat infections caused by multidrug-resistant bacteria, perform poorly againstSerratia marcescens. To investigate the underlying mechanisms, Tn5mutagenesis was performed and two mutants exhibiting increased polymyxin B (PB) susceptibility were isolated. The mutants were found to have Tn5inserted into thearnBandarnCgenes. In other bacteria,arnBandarnCbelong to the seven-genearnoperon, which is involved in lipopolysaccharide (LPS) modification. LPSs ofarnmutants had greater PB-binding abilities than that of wild-type LPS. Further, we identified PhoP, a bacterial two-component response regulator, as a regulator of PB susceptibility inS. marcescens. By the reporter assay, we found PB- and low-Mg2+-induced expression ofphoPandarnin the wild-type strain but not in thephoPmutant. Complementation of thephoPmutant with the full-lengthphoPgene restored the PB MIC and induction by PB and low Mg2+levels, as in the wild type. An electrophoretic mobility shift assay (EMSA) further demonstrated that PhoP bound directly to thearnpromoter. The PB challenge test confirmed that pretreatment with PB and low Mg2+levels protectedS. marcescensfrom a PB challenge in the wild-type strain but not in thephoPmutant. Real-time reverse transcriptase-PCR also indicated that PB serves as a signal to regulate expression ofugd, a gene required for LPS modification, inS. marcescensthrough a PhoP-dependent pathway. Finally, we found that PB-resistant clinical isolates displayed greater expression ofarnAupon exposure to PB than did susceptible isolates. This is the first report to describe the role ofS. marcescensarnin PB resistance and its modulation by PB and Mg2+through the PhoP protein.


2011 ◽  
Vol 24 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Aliki K. Tzima ◽  
Epaminondas J. Paplomatas ◽  
Payungsak Rauyaree ◽  
Manuel D. Ospina-Giraldo ◽  
Seogchan Kang

Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall–degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain.


2005 ◽  
Vol 187 (15) ◽  
pp. 5166-5178 ◽  
Author(s):  
Wael R. Abdel-Fattah ◽  
Yinghua Chen ◽  
Amr Eldakak ◽  
F. Marion Hulett

ABSTRACT The phoB gene of Bacillus subtilis encodes an alkaline phosphatase (PhoB, formerly alkaline phosphatase III) that is expressed from separate promoters during phosphate deprivation in a PhoP-PhoR-dependent manner and at stage two of sporulation under phosphate-sufficient conditions independent of PhoP-PhoR. Isogenic strains containing either the complete phoB promoter or individual phoB promoter fusions were used to assess expression from each promoter under both induction conditions. The phoB promoter responsible for expression during sporulation, phoB-PS, was expressed in a wild-type strain during phosphate deprivation, but induction occurred >3 h later than induction of Pho regulon genes and the levels were approximately 50-fold lower than that observed for the PhoPR-dependent promoter, phoB-PV. EσE was necessary and sufficient for PS expression in vitro. PS expression in a phoPR mutant strain was delayed 2 to 3 h compared to the expression in a wild-type strain, suggesting that expression or activation of σE is delayed in a phoPR mutant under phosphate-deficient conditions, an observation consistent with a role for PhoPR in spore development under these conditions. Phosphorylated PhoP (PhoP∼P) repressed PS in vitro via direct binding to the promoter, the first example of an EσE-responsive promoter that is repressed by PhoP∼P. Whereas either PhoP or PhoP∼P in the presence of EσA was sufficient to stimulate transcription from the phoB-PV promoter in vitro, roughly 10- and 17-fold-higher concentrations of PhoP than of PhoP∼P were required for PV promoter activation and maximal promoter activity, respectively. The promoter for a second gene in the Pho regulon, ykoL, was also activated by elevated concentrations of unphosphorylated PhoP in vitro. However, because no Pho regulon gene expression was observed in vivo during Pi -replete growth and PhoP concentrations increased only threefold in vivo during phoPR autoinduction, a role for unphosphorylated PhoP in Pho regulon activation in vivo is not likely.


1978 ◽  
Vol 24 (5) ◽  
pp. 629-631 ◽  
Author(s):  
La Verne Russell ◽  
Hiroshi Yamazaki

The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.


Sign in / Sign up

Export Citation Format

Share Document