Experimental investigation of single value variables of three-dimensional density current

2009 ◽  
Vol 87 (2) ◽  
pp. 125-134 ◽  
Author(s):  
B. Firoozabadi ◽  
H. Afshin ◽  
J. Sheikhi

The height of a dense layer underflow is defined as the interface between a dyed saline solution fluid and colorless ambient fluid. In this paper, the density current height or vision height of three-dimensional saline water under pure water is measured empirically, and the relation of this parameter with the location of maximum velocity is investigated. Because of the absence of a clear interface between the dense underflow and pure water, researchers were unable to define a unique parameter for the evaluation of density current height. The parameters used by some researchers include the height corresponding to the location of maximum, half-maximum, and quarter-maximum velocity in the velocity profiles. In this work, the velocity components were measured by an acoustic Doppler velocimeter (ADV), and corresponding parameters were computed based on these velocities. In this laboratory, channel walls were made of glass, so in all experiments the vision height of the dense layer could be measured. Therefore, a relation between the velocity profiles and the dense layer height was established. Results show that dense layer height has a close correlation with height corresponding to the location of the quarter-maximum velocity. Finally, the effects of concentration, bed slope, and discharge on the dense layer height were studied. Experimental data also show that an increase in the inlet flow rate leads to an increase in the dense layer height, and this parameter decreases with an increase in the bed slope or concentration.

Author(s):  
B. Firoozabadi ◽  
H. Afshin ◽  
E. Safaaee

Density currents are continuous currents which move down-slope due to the fact that their density is greater than that of ambient water. The density difference is caused by temperature differences, chemical elements, dissolved materials, or suspended sediment. Many researchers have studied the density current structures, their complexities and uncertainties. However, there is not a detailed 3-D turbulent density current data set perfectly. In this work, the structure of 3-dimensional salt solution density currents is investigated. A laboratory channel was used to study the flow resulting from the release of salt solution into freshwater over an inclined bed. The experiments were conducted with different bottom slopes, inlet concentrations and flow rates. In these tests, the instantaneous velocities are measured by an ADV apparatus (Acoustic Doppler Velocimeter). Results show that by increasing the bed-slope and inlet concentrations, the height of the current decreases. As the density current moves downward the channel or by increasing the discharge, the height of the density current increases. Finally, the effects of different variables such as the bed slope, concentration and flow rate of entering fluid on the velocity profile in different distances from the entrance is studied. The entrainment coefficient, lateral spreading and drag coefficient of the bed and shear layer between salt solution and ambient water is discussed.


2006 ◽  
Author(s):  
Ehsan Aram ◽  
Bahar Firoozabadi

Dense underflows are continuous currents which move down-slope due to the fact that their density is heavier than that ambient water. In this work, 2-D and 3-D density current in a channel were investigated by a set of experimental studies and the data were used to simulate the density current. The velocity components were measured using Acoustic Doppler Velocimetry (ADV). The height of density current (current's depth) was also measured. In this study, the density current with a uniform velocity and concentration enters the channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. A low-Reynolds number turbulent model (Launder and Sharma, 1974) has been applied to simulate the structure of 3-D density current in the confined (small width three dimensional density current) and unconfined (large width three dimensional density current) channels. The computed velocity profiles in unconfined channel were compared with the 3-D experimental data for verification. The height and velocity profiles of the confined current were also compared with 2-D experimental data. It was shown that by decreasing in width of the channel, the height of the current and the magnitude of maximum and average velocity increase and the confined current behaves as 2-D current after a distance. These factors prepare the conditions for minimizing sediment deposition and sedimentation rates can be greatly reduced. Although the k - ε Launder and Sharma model is applied here to a conservative density current, it seems that the analysis can be valid in general for turbidity current laden with fine particles.


Author(s):  
B. Firoozabadi ◽  
H. Afshin ◽  
A. Baghaer Poor

The present study investigates the turbulence characteristic of density current experimentally. The 3D Acoustic-Doppler Velocimeter (ADV) was used to measure the instantaneous velocity and characteristics of the turbulent flow. The courses of experiment were conducted in a three-dimensional channel for different discharge flows, concentrations, and bed slopes. Results are expressed at various distances from the inlet, for all flow rates, slopes and concentrations as the distribution of turbulence energy, Reynolds stress and the turbulent intensity. It was concluded that the maximum turbulence intensity happens in both the interface and near the wall. Also it was observed that turbulence intensity reaches its minimum where maximum velocity occurs.


Author(s):  
Y Wu ◽  
X Zhu ◽  
Z Du

A developed plate stator model with and without trailing edge blowing (TEB) is studied using experimental methods. Wake characteristics of flow over the stator in the three-dimensional wake regimes are studied using hot-wire anemometry (HWA) and particle image velocimetry (PIV) techniques. First, the mean velocity profiles have been measured in the wake of the stator using HWA. Four wake characteristics have been obtained through momentum thickness judgments: pure wake, weak wake, momentumless wake, and jet. These velocity profiles show some differences in momentum deficit for the four cases. Then, the velocity spectra of the pure wake and momentumless wake obtained through the HWA measurements showed that TEB can eliminate the shedding vortex of the stator. Characteristic length scales based on the wake turbulent intensity profiles showed that the momentumless wake can reduce the wake width and depth. PIV measurement is carried out to measure the flow field of the four wakes. Finally, the application of TEB approaching momentumless wake status is used on an industrial ventilation low-pressure axial fan to assess noise reduction. The results show that TEB can make the outlet of the stator uniform, reduce velocity fluctuation, destroy the vorticity structure downstream of the stator, and reduce interaction noise level of the stator and rotor.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Shuxin Luo ◽  
Ting Fong May Chui

<p>Mangrove forests are mainly found in the intertidal zone. Their ability to live in saline water enables them to outcompete non-mangrove vegetation in harsh and specific coastal environment. Nevertheless, they can still be invaded by alien mangrove species in suitable hydrological conditions, possibly resulting in more fragile ecosystems. Subtropical mangrove ecosystem demonstrates high variability in mangrove growth and hydrological conditions. However, their interactions are not well-understood, especially for the mangrove interspecific competition in varying groundwater conditions. To address this issue, the present study developed a coupled three-dimensional groundwater-vegetation model based on MANTRA (MANHAM-SUTRA) to simultaneously simulate groundwater hydrodynamics and mangrove distribution. The developed model was then applied to a subtropical mangrove swamp invaded by Sonneratia spp. in Mai Po Nature Reserve, Hong Kong, China. Vegetation domain is updated yearly using the annual mangrove areas extracted from remote-sensing images from 2000 to 2018. Then, multidecadal simulations were performed to validate the model in simulating the interaction between groundwater and mangrove growth. For the piezometric head, all RMS errors are smaller than 0.2 m and the correlation coefficients are larger than 0.86, which proves the effectiveness of the model in groundwater level simulation within Mai Po. The seasonal variations in the groundwater salinity were also well captured in both the fringe forest and the mudflat. The simulated biomass of Sonneratia spp. is mainly distributed at the river outlets, which is also in good agreement with the historical measurements. The validated model can then be used to predict the invasion and the distribution of the exotic mangrove species in the context of future environmental changes for better management of mangrove swamps. Since Sonneratia is a common alien species in southern China, the model can also be used for regional management of mangrove invasion and conservation of native species. The insights obtained from this study may also provide references for other similar studies examining the interaction between coastal groundwater and vegetation.</p>


Sign in / Sign up

Export Citation Format

Share Document