Cylindrical or spherical dust-ion acoustic soliton in an adiabatic dusty plasma with electrons following a q-nonextensive distribution

2012 ◽  
Vol 90 (6) ◽  
pp. 525-530 ◽  
Author(s):  
Parvin Eslami ◽  
Marzieh Mottaghizadeh ◽  
Hamid Reza Pakzad

Using the reductive perturbation technique, a cylindrical and (or) spherical Korteweg – de Vries (KdV) equation is derived for a dust-ion acoustic solitary wave (DIASW) in an unmagnetized dusty plasma, whose constituents are adiabatic ion fluid, nonextensive electrons, and negatively charged static dust particles. The solution of the modified KdV equation in nonplanar geometry is numerically analyzed. The change of the DIASW structure due to the effect of the geometry, nonextensive parameter, dust density, and ion temperature is investigated by numerical calculation of the cylindrical and (or) spherical KdV equation. It is found that both compressive and rarefactive type DIA waves are obtained depending on the plasma parameter.

2015 ◽  
Vol 93 (8) ◽  
pp. 912-919 ◽  
Author(s):  
N. Panahi ◽  
H. Alinejad ◽  
M. Mahdavi

Nonlinear self-modulation of dust–ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising warm adiabatic ions, arbitrarily charged dust particles, and hot nonextensive q-distributed electrons. By employing the multiple space and time scales perturbation, a nonlinear Schrödinger equation is derived for the evolution of the wave amplitude. The existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over different ranges of the nonextensive parameter q. The growth rate of the modulation instability is also given for different values of the q parameter. It is found that the critical wave number at which the instability sets in increases as the nonextensive parameter q increases. This leads to a wider range (in spatial extension) of the stable envelope solitons. It is also found that the effects of ion temperature and negative (positive) dust concentration significantly modify the criteria for the modulation instability of DIA waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive particles exist: such as instellar plasma, stellar polytropes, cosmic radiation, and systems with long-rang interaction.


Gases ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 106-116
Author(s):  
Akib Al Noman ◽  
Md Khairul Islam ◽  
Mehedi Hassan ◽  
Subrata Banik ◽  
Nure Alam Chowdhury ◽  
...  

The standard nonlinear Schrödinger Equation (NLSE) is one of the elegant equations to find detailed information about the modulational instability criteria of dust-ion-acoustic (DIA) waves and associated DIA rogue waves (DIARWs) in a three-component dusty plasma medium with inertialess super-thermal kappa distributed electrons, and inertial warm positive ions and negative dust grains. It can be seen that the plasma system supports both fast and slow DIA modes under consideration of inertial warm ions along with inertial negatively charged dust grains. It is also found that the modulationally stable parametric regime decreases with κ. The numerical analysis has also shown that the amplitude of the first and second-order DIARWs decreases with ion temperature. These results are to be considered the cornerstone for explaining the real puzzles in space and laboratory dusty plasmas.


2015 ◽  
Vol 70 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Gurudas Mandal ◽  
Kaushik Roy ◽  
Anindita Paul ◽  
Asit Saha ◽  
Prasanta Chatterjee

AbstractThe nonlinear propagation and interaction of dust acoustic multi-solitons in a four component dusty plasma consisting of negatively and positively charged cold dust fluids, non-thermal electrons, and ions were investigated. By employing reductive perturbation technique (RPT), we obtained Korteweged–de Vries (KdV) equation for our system. With the help of Hirota’s bilinear method, we derived two-soliton and three-soliton solutions of the KdV equation. Phase shifts of two solitons and three solitons after collision are discussed. It was observed that the parameters α, β, β1, μe, μi, and σ play a significant role in the formation of two-soliton and three-soliton solutions. The effect of the parameter β1 on the profiles of two soliton and three soliton is shown in detail.


2013 ◽  
Vol 79 (5) ◽  
pp. 893-908 ◽  
Author(s):  
M. K. MISHRA ◽  
S. K. JAIN

AbstractIon-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.


2009 ◽  
Vol 52 (2) ◽  
pp. 346-350
Author(s):  
He Guang-Jun ◽  
Li Xiao-Li ◽  
Lin Mai-Mai ◽  
Shi Yu-Ren ◽  
Duan Wen-Shan

1988 ◽  
Vol 40 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Gobinda Pada Pakira ◽  
A. Roy Chowdhury ◽  
S. N. Paul

As a continuation of our earlier work, we have analysed the higher-order perturbative corrections to the formation of (ion-acoustic) solitary waves in a relativistic plasma. It is found that the relativistic considerations affect the amplitude and width variation - as conjectured in our previous paper. Our analysis employs a higher-order singular perturbation technique, with the elimination of secular terms in stages. In this way we arrive at an inhomogeneous KdV-type equation, which is then solved exactly. At this point a new phenomena arises at a critical value of the phase velocity at which the coefficient of the nonlinear term in the KdV equation vanishes. A new set of stretched co-ordinate is then used to derive a modified KdV equation. In both cases we have numerically computed the specific physical profile of the new solitary wave and its width.


1988 ◽  
Vol 66 (1) ◽  
pp. 79-81 ◽  
Author(s):  
G. C. Das ◽  
B. Karmakar

By applying the reductive perturbation technique to the basic system of equations governing plasma dynamics, a modified Korteweg–de Vries (KdV) equation is derived. The inclusion of nonisothermality, together with its reduction to a small magnitude, yields various interesting characteristics relating to the existence of solitons in multicomponent plasmas that include several ionic species and multiple nonisothermal electrons. The mathematical development shows that a closed relation among the solitons existing in the various plasmas arises due to the different magnitude of nonisothermalities.


2016 ◽  
Vol 82 (1) ◽  
Author(s):  
H. Alinejad ◽  
M. Mahdavi ◽  
M. Shahmansouri

The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.


2010 ◽  
Vol 76 (2) ◽  
pp. 169-181 ◽  
Author(s):  
A. ESFANDYARI-KALEJAHI ◽  
I. KOURAKIS ◽  
M. AKBARI-MOGHANJOUGHI

AbstractThe amplitude modulation of ion-acoustic waves is investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrödinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (μ), for a given value of the hot-to-cold electron density ratio (ν), favors instability. The role of the ion temperature is also discussed. In the limiting case ν = 0 (or ν → ∞), which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.


Sign in / Sign up

Export Citation Format

Share Document