DIURNAL INTENSITY VARIATIONS IN THE OUTER RADIATION ZONE AT 1000 KM

1964 ◽  
Vol 42 (6) ◽  
pp. 1135-1148 ◽  
Author(s):  
I. B. McDiarmid ◽  
J. R. Burrows

A diurnal variation has been observed at 1000 km in the outer radiation zone in the average intensity of trapped electrons with energies greater than 40 kev and in the average intensity and frequency of occurrence of precipitated electrons of the same energy. The amplitude of the variation is greatest near the high-latitude boundary of the outer zone, but extends down to invariant latitudes of λ = 60° (L ~ 4.5). In the latitude range λ = 60° to 68° the shape of the distributions of average intensity against local time is very similar for both the trapped and precipitated electrons with the daily maximum occurring around 0800 hours local time. Good statistical agreement is obtained between the frequency of occurrence of precipitation and auroral absorption at two different local times.

2015 ◽  
Vol 8 (2) ◽  
pp. 2093-2121
Author(s):  
A. J. Mannucci ◽  
B. T. Tsurutani ◽  
O. Verkhoglyadova ◽  
A. Komjathy ◽  
X. Pi

Abstract. We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere-ionosphere because of the important role of conductivity on high latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E layer dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms, that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the southern, less sunlit, hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50° magnetic latitude for signatures of precipitation in the E region. For nine days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012, the precipitation tended to be somewhat more equatorward than predicted by the climatology (by about 5–10° latitude). We conclude that, if analyzed appropriately, high latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.


1968 ◽  
Vol 46 (1) ◽  
pp. 49-57 ◽  
Author(s):  
I. B. McDiarmid ◽  
J. R. Burrows

Data obtained from the Alouette II satellite are used to examine various high-latitude boundaries of the outer radiation zone as a function of local magnetic time. Four different boundaries are defined and these are referred to as the 35-keV "background" boundary, the 35-keV "smooth" boundary, the 35-keV "sharp" boundary, and the 3.9-MeV "background" boundary. All of the boundaries show a marked dependence on local magnetic time. The 35-keV "smooth" and the 3.9-MeV "background" boundaries are identified with the stable trapping region and show a 1100–2300-hour asymmetry of about 3°. The 35-keV "background" boundary falls at higher latitudes than the other boundaries at all local times; a noon–midnight asymmetry of about 6° is observed as well as a marked dawn–dusk asymmetry. The 35-keV "background" boundary is tentatively associated with the boundary of closed geomagnetic field lines and it is suggested that there is a dawn–dusk asymmetry in the field configuration. The 35-keV "sharp" boundary is identified with the inner edge of the "cusp" region and its relation to the other boundaries is examined.


2015 ◽  
Vol 8 (7) ◽  
pp. 2789-2800 ◽  
Author(s):  
A. J. Mannucci ◽  
B. T. Tsurutani ◽  
O. Verkhoglyadova ◽  
A. Komjathy ◽  
X. Pi

Abstract. We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere–ionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E-layer-dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the Southern, less sunlit, Hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50° magnetic latitude for signatures of precipitation in the E region. For 9 days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012 the precipitation tended to be somewhat more equatorward than the climatology (by about 5–10° latitude) and equatorward of the auroral boundary data acquired from the SSUSI sensor onboard the F18 DMSP satellite. We conclude that, if analyzed appropriately, high-latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.


1964 ◽  
Vol 42 (4) ◽  
pp. 616-626 ◽  
Author(s):  
I. B. McDiarmid ◽  
J. R. Burrows

Particle detectors on the Alouette satellite have been used to determine the average high-latitude boundary of the outer radiation zone at 1000 km as a function of local time. The boundary for electrons with energies greater than 40 kev is approximately symmetrical with respect to the noon–midnight meridian and occurs at the highest latitude near local noon, shifting between 4° and 5° to its lowest value near local midnight. There is very little difference in the average boundaries of so-called trapped and precipitated electrons. The results are discussed in terms of measurements of electrons with similar energies in the equatorial plane and models of the earth's magnetic field.


2020 ◽  
Vol 57 (4) ◽  
pp. 1234-1251
Author(s):  
Shuyang Bai

AbstractHermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.


1981 ◽  
Vol 59 (8) ◽  
pp. 1150-1157 ◽  
Author(s):  
T. Oguti ◽  
S. Kokubun ◽  
K. Hayashi ◽  
K. Tsuruda ◽  
S. Machida ◽  
...  

The frequency of occurrence of pulsating auroras is statistically examined on the basis of all-sky TV data for 34 nights from five stations, in a range from 61.5 to 74.3° in geomagnetic latitude. The results are that: (1) occurrence probability of a pulsating aurora is 100% after 4 h in geomagnetic local time, (2) pulsating auroras occur in the morning hours along the auroral oval even when magnetic activity is as small as 0o ≤ Kp ≤ 1, (3) pulsating auroras occur even in the evening when Kp increases to greater than 3−, (4) drift of pulsating auroras is westward in the evening while it is eastward in the morning hours, (5) the region of pulsating auroras splits into two zones, 64 to 68° and 61 to 63° in geomagnetic latitude, after 4 h geomagnetic local time for Kp from 2o to 3−, and the splitting also appears to exist for greater Kp as evidenced by observation other than our auroral data. These results are discussed in relation to distributions of cold plasma irregularities and energetic electrons in the magnetosphere.


2013 ◽  
Vol 31 (9) ◽  
pp. 1569-1578 ◽  
Author(s):  
M. Yamauchi ◽  
I. Dandouras ◽  
H. Rème ◽  
R. Lundin ◽  
L. M. Kistler

Abstract. Using Cluster Ion Spectrometry (CIS) data from the spacecraft-4 perigee traversals during the 2001–2006 period (nearly 500 traversals after removing those that are highly contaminated by radiation belt particles), we statistically examined the local time distribution of structured trapped ions at sub- to few-keV range as well as inbound–outbound differences of these ion signatures in intensities and energy–latitude dispersion directions. Since the Cluster orbit during this period was almost constant and approximately north–south symmetric at nearly constant local time near the perigee, inbound–outbound differences are attributed to temporal developments in a 1–2 h timescale. Three types of structured ions at sub- to few keV range that are commonly found in the inner magnetosphere are examined: – Energy–latitude dispersed structured ions at less than a few keV, – Short-lived dispersionless ion stripes at wide energy range extending 0.1–10 keV, – Short-lived low-energy ion bursts at less than a few hundred eV. The statistics revealed that the wedge-like dispersed ions are most often observed in the dawn sector (60% of traversals), and a large portion of them show significant enhancement during the traversals at all local times. The short-lived ion stripes are predominantly found near midnight, where most stripes are significantly enhanced during the traversals and are associated with substorm activities with geomagnetic AL < −300 nT. The low-energy bursts are observed at all local times and under all geomagnetic conditions, with moderate peak of the occurrence rate in the afternoon sector. A large portion of them again show significant enhancement or decay during the traversals.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170915 ◽  
Author(s):  
Brigitte Sommer ◽  
Eugenia M. Sampayo ◽  
Maria Beger ◽  
Peter L. Harrison ◽  
Russ C. Babcock ◽  
...  

Understanding how range-edge populations will respond to climate change is an urgent research priority. Here, we used a phylogenetic community ecology approach to examine how ecological and evolutionary processes shape biodiversity patterns of scleractinian corals at their high-latitude range limits in eastern Australia. We estimated phylogenetic signal in seven ecologically important functional traits and conducted tests of phylogenetic structure at local and regional scales using the net relatedness (NRI) and nearest taxon indices (NTI) for the presence/absence and abundance data. Regional tests showed light phylogenetic clustering, indicating that coral species found in this subtropical-to-temperate transition zone are more closely related to each other than are species on the nearby, more northerly Great Barrier Reef. Local tests revealed variable patterns of phylogenetic clustering and overdispersion and higher than expected phylogenetic turnover among sites. In combination, these results are broadly consistent with the hierarchical filtering model, whereby species pass through a regional climatic filter based on their tolerances for marginal conditions and subsequently segregate into local assemblages according to the relative strength of habitat filtering and species interactions. Conservatism of tested traits suggests that corals will likely track their niches with climate change. Nevertheless, high turnover of lineages among sites indicates that range shifts will probably vary among species and highlights the vulnerability and conservation significance of high-latitude reefs.


2004 ◽  
Vol 22 (10) ◽  
pp. 3537-3560 ◽  
Author(s):  
P. E. Sandholt ◽  
C. J. Farrugia ◽  
W. F. Denig

Abstract. In two case studies we elaborate on spatial and temporal structures of the dayside aurora within 08:00-16:00 magnetic local time (MLT) and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle. The detailed 2-D auroral morphology is obtained from continuous ground observations at Ny Ålesund (76° magnetic latitude (MLAT)), Svalbard during two days when the interplanetary magnetic field (IMF) is directed southeast (By>0; Bz<0). The auroral activity consists of the successive activations of the following forms: (i) latitudinally separated, sunward moving, arcs/bands of dayside boundary plasma sheet (BPS) origin, in the prenoon (08:00-11:00 MLT) and postnoon (12:00-16:00 MLT) sectors, within 70-75° MLAT, (ii) poleward moving auroral forms (PMAFs) emanating from the pre- and postnoon brightening events, and (iii) a specific activity appearing in the 07:00-10:00 MLT/75-80° MLAT during the prevailing IMF By>0 conditions. The pre- and postnoon activations are separated by a region of strongly attenuated auroral activity/intensity within the 11:00-12:00 MLT sector, often referred to as the midday gap aurora. The latter aurora is attributed to the presence of component reconnection at the subsolar magnetopause where the stagnant magnetosheath flow lead to field-aligned currents (FACs) which are of only moderate intensity. The much more active and intense aurorae in the prenoon (07:00-11:00 MLT) and postnoon (12:00-16:00 MLT) sectors originate in magnetopause reconnection events that are initiated well away from the subsolar point. The high-latitude auroral activity in the prenoon sector (feature iii) is found to be accompanied by a convection channel at the polar cap boundary. The associated ground magnetic deflection (DPY) is a Svalgaard-Mansurov effect. The convection channel is attributed to effective momentum transfer from the solar wind-magnetosphere dynamo in the high-latitude boundary layer (HBL), on the downstream side of the cusp.


2017 ◽  
Vol 35 (2) ◽  
pp. 333-344 ◽  
Author(s):  
Fasil Tesema ◽  
Rafael Mesquita ◽  
John Meriwether ◽  
Baylie Damtie ◽  
Melessew Nigussie ◽  
...  

Abstract. Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry–Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms−1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms−1 poleward during the winter months and 10 to 25 ms−1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was  ∼  110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms−1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.


Sign in / Sign up

Export Citation Format

Share Document