scholarly journals Use of radio occultation to probe the high-latitude ionosphere

2015 ◽  
Vol 8 (7) ◽  
pp. 2789-2800 ◽  
Author(s):  
A. J. Mannucci ◽  
B. T. Tsurutani ◽  
O. Verkhoglyadova ◽  
A. Komjathy ◽  
X. Pi

Abstract. We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere–ionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E-layer-dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the Southern, less sunlit, Hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50° magnetic latitude for signatures of precipitation in the E region. For 9 days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012 the precipitation tended to be somewhat more equatorward than the climatology (by about 5–10° latitude) and equatorward of the auroral boundary data acquired from the SSUSI sensor onboard the F18 DMSP satellite. We conclude that, if analyzed appropriately, high-latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.

2015 ◽  
Vol 8 (2) ◽  
pp. 2093-2121
Author(s):  
A. J. Mannucci ◽  
B. T. Tsurutani ◽  
O. Verkhoglyadova ◽  
A. Komjathy ◽  
X. Pi

Abstract. We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere-ionosphere because of the important role of conductivity on high latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejection (CME) storms are examined with the COSMIC data. We find clear correlation between geomagnetic activity and electron density retrievals from COSMIC. At nighttime local times, the number of profiles with maximum electron densities in the E layer (below 200 km altitude) is well correlated with geomagnetic activity. We interpret this to mean that electron density increases due to precipitation are captured by the COSMIC profiles. These "E layer dominant ionosphere" (ELDI) profiles have geomagnetic latitudes that are consistent with climatological models of the auroral location. For the two HSS storms, that occurred in May of 2011 and 2012, a strong hemispheric asymmetry is observed, with nearly all the ELDI profiles found in the southern, less sunlit, hemisphere. Stronger aurora and precipitation have been observed before in winter hemispheres, but the degree of asymmetry deserves further study. For the two CME storms, occurring in July and November of 2012, large increases in the number of ELDI profiles are found starting in the storm's main phase but continuing for several days into the recovery phase. Analysis of the COSMIC profiles was extended to all local times for the July 2012 CME storm by relaxing the ELDI criterion and instead visually inspecting all profiles above 50° magnetic latitude for signatures of precipitation in the E region. For nine days during the July 2012 period, we find a signature of precipitation occurs nearly uniformly in local time, although the magnitude of electron density increase may vary with local time. The latitudinal extent of the precipitation layers is generally consistent with auroral climatology. However, after the storm main phase on 14 July 2012, the precipitation tended to be somewhat more equatorward than predicted by the climatology (by about 5–10° latitude). We conclude that, if analyzed appropriately, high latitude COSMIC profiles have the potential to contribute to our understanding of MI coupling processes and extend and improve existing models of the auroral region.


2017 ◽  
Vol 122 (7) ◽  
pp. 7473-7490 ◽  
Author(s):  
Diana Loucks ◽  
Scott Palo ◽  
Marcin Pilinski ◽  
Geoff Crowley ◽  
Irfan Azeem ◽  
...  

1964 ◽  
Vol 42 (6) ◽  
pp. 1135-1148 ◽  
Author(s):  
I. B. McDiarmid ◽  
J. R. Burrows

A diurnal variation has been observed at 1000 km in the outer radiation zone in the average intensity of trapped electrons with energies greater than 40 kev and in the average intensity and frequency of occurrence of precipitated electrons of the same energy. The amplitude of the variation is greatest near the high-latitude boundary of the outer zone, but extends down to invariant latitudes of λ = 60° (L ~ 4.5). In the latitude range λ = 60° to 68° the shape of the distributions of average intensity against local time is very similar for both the trapped and precipitated electrons with the daily maximum occurring around 0800 hours local time. Good statistical agreement is obtained between the frequency of occurrence of precipitation and auroral absorption at two different local times.


2010 ◽  
Vol 28 (7) ◽  
pp. 1449-1462 ◽  
Author(s):  
M. Mendillo ◽  
C. Narvaez

Abstract. The response of the mid-latitude ionosphere to geomagnetic storms depends upon several pre-storm conditions, the dominant ones being season and local time of the storm commencement (SC). The difference between a site's geographic and geomagnetic latitudes is also of major importance since it governs the blend of processes linked to solar production and magnetospheric input, respectively. Case studies of specific storms using ionospheric data from both hemispheres are inherently dominated by seasonal effects and the various local times versus longitude of the SCs. To explore inter-hemispheric consistency of ionospheric storms, we identify "geophysically-equivalent-sites" as locations where the geographic and geomagnetic latitudes have the same relationship to each other in both hemispheres. At the longitudes of the dipole tilt, the differences between geographic and geomagnetic latitudes are at their extremes, and thus these are optimal locations to see if pre-conditioning and/or storm-time input are the same or differ between the hemispheres. In this study, we use ionosonde values of the F2-layer maximum electron density (NmF2) to study geophysical equivalency at Wallops Island (VA) and Hobart (Tasmania), using statistical summaries of 206 events during solar cycle #20. We form average patterns of ΔNmF2 (%) versus local time over 7-day storm periods that are constructed in ways that enhance the portrayal of the average characteristic features of the positive and negative phases of ionospheric storms. The results show a consistency between four local time characteristic patterns of storm-induced perturbations, and thus for the average magnitudes and time scales of the processes that cause them in each hemisphere. Subtle differences linked to small departures from pure geophysical equivalency point to a possible presence of hemispheric asymmetries governed by the non-mirror-image of geomagnetic morphology in each hemisphere.


2018 ◽  
Vol 61 (Vol 61 (2018)) ◽  
Author(s):  
Fabio Giannattasio ◽  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Virgilio Quattrociocchi ◽  
Igino Coco ◽  
...  

2018 ◽  
Author(s):  
Liudmila I. Gromova ◽  
Matthias Förster ◽  
Iakov I. Feldstein ◽  
Patricia Ritter

Abstract. Hall current variations in different time sectors during six magnetic storms of the summer seasons in 2003 and 2005 are examined in detail: three storms in the day-night meridional sector and three storms in the dawn-dusk sector. We investigate the sequence of the phenomena, their structure, positions and the density of the polar (PE) and the auroral (AE) Hall electrojets using scalar magnetic field measurements obtained from the CHAMP satellite in accordance with the study of Ritter et al. (2004a). Particular attention is devoted to the spatial-temporal behaviour of the PE at ionospheric altitudes during daytime hours both under geomagnetically quiet and under magnetic storm conditions. We analyze the correlations of the PE and AE with various activity indices like SYM/H and ASYM/H, that stand for large-scale current systems in the magnetosphere, AL for ionospheric currents, and the IndN coupling function for the state of the solar wind. We obtain regression relations of the magnetic latitude MLat and the electrojet current density I with those indices and with the interplanetary By and Bz magnetic field components. For the geomagnetic storms during summer seasons investigated here, we obtain the following typical characteristics for the electrojets' dynamics: 1. The PE appears at magnetic latitudes (MLat) and local times (MLT) of the cusp position. 2. This occurs in the day-time sector at MLat ∼ 73°–80° with a westward or an eastward direction, depending on the orientation of the IMF By component. Changes of current flow direction in the PE can occur repeatedly during the storm, but only due to changes of the IMF By orientation. 3. The current density in the PE increases with the intensity of the IMF By component from I ∼ 0.4 A/m for By ∼ 0 nT up to I ∼ 1.0 A/m for By ∼ 23 nT. 4. The MLat position of the PE does not depend on the orientation and the strength of the IMF By component. It depends, however, on the strength of the IMF Bz component. 5. The PE is situated at MLat ∼ 73° on the dayside during geomagnetically quiet periods and the recovery phase of a magnetic storm, and it shifts equatorward during intense substorms and the main phase of a storm. 6. There is no connection between MLat and the current density I in the PE with the magnetospheric ring current DR (index SYM/H). 7. There is a correlation between the current density I in the PE and the partial ring current in the magnetosphere (PRC, index ASYM/H), but practically no correlation of this index with MLat of the PE. 8. Substorms that occur before and during the beginning of a storm main phase are accompanied in the daytime by the appearance of an eastward electrojet (EE) at MLat ∼ 64° and then also by a westward electrojet (WE). In the nighttime sector the WE appears at MLat ∼ 64°. 9. During the development of the main storm phase, the daytime EE and the nighttime WE shift toward subauroral latitudes of MLat ∼ 56° and intensify up to I ∼ 1.5 A/m. Both electrojets persist during the main phase of the storm. The WE is then located about 6° closer to the pole than the EE during evening hours and about 2°–3° during daytime hours.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


2020 ◽  
Vol 57 (4) ◽  
pp. 1234-1251
Author(s):  
Shuyang Bai

AbstractHermite processes are a class of self-similar processes with stationary increments. They often arise in limit theorems under long-range dependence. We derive new representations of Hermite processes with multiple Wiener–Itô integrals, whose integrands involve the local time of intersecting stationary stable regenerative sets. The proof relies on an approximation of regenerative sets and local times based on a scheme of random interval covering.


Sign in / Sign up

Export Citation Format

Share Document