Neutron Scattering from Small Lead Particles

1974 ◽  
Vol 52 (8) ◽  
pp. 748-752 ◽  
Author(s):  
V. Novotny ◽  
T. M. Holden ◽  
G. Dolling

Neutron diffraction experiments on small particles of lead in the pores of Vycor glass are described. The small particles have a coherence length of (107 ± 20) Å; there is only a slight increase in the lattice parameter as compared with bulk lead, but an analysis of the intensity of the diffraction peaks reveals that there is an increase in the average amplitude of vibration of 28%. At least 80% of the lead in the glass is present in the crystalline state and contributes to the coherent diffraction.

1998 ◽  
Vol 109 (4) ◽  
pp. 1478-1485 ◽  
Author(s):  
Fabio Bruni ◽  
Maria Antonietta Ricci ◽  
Alan K. Soper

The chemical composition fluctuation in a material may cause line broadening due to the variation of the lattice parameter, which yields a distribution of the profile centers scattered from different volumes of the material. The nature of line broadening induced by chemical heterogeneities is similar to a microstrain-like broadening in the sense that the peak width increases with the magnitude of the diffraction vector. However, the dependence of compositional broadening on the orientation of diffraction vector (i.e. the anisotropic nature of this effect) differs very much from other types of strain broadening (e.g. from that caused by dislocations). The anisotropic line broadening caused by composition fluctuation is parameterized for different crystal systems and incorporated into the evaluation procedures of peak profiles. This chapter shows that the composition probability distribution function can be determined from the moments of the experimental line profiles using the Edgeworth series. The concentration fluctuations in decomposed solid solutions can also be determined from the intensity distribution in the splitted diffraction peaks.


2019 ◽  
Vol 21 (39) ◽  
pp. 21782-21789 ◽  
Author(s):  
Adam H. Turner ◽  
John D. Holbrey

Neutron scattering reveals the persistent three-dimensional hydrogen-bonding network between glycerol molecules in the 1 : 2 choline chloride/glycerol eutectic.


2019 ◽  
Vol 33 (15) ◽  
pp. 1950149 ◽  
Author(s):  
N. T. Mamedov ◽  
S. H. Jabarov ◽  
D. P. Kozlenko ◽  
N. A. Ismayilova ◽  
M. Yu. Seyidov ◽  
...  

We have investigated the crystal structure of strongly anisotropic semiconductor TlInSe2 by neutron diffraction method under high pressure upto P = 3.3 GPa. It was shown that the tetragonal phase of TlInSe2 crystal (the space group I4/mcm) is stable in the whole investigated range of pressure. The lattice parameters dependence of the pressure and the unit cell volume are obtained, the linear coefficients of compressibility and the bulk moduli are calculated. At the low pressure, obtained value of compressibility for the lattice parameter a is k[Formula: see text] = 14.23 × 10[Formula: see text] GPa[Formula: see text] and for c is k[Formula: see text] = 5.93 × 10[Formula: see text] GPa[Formula: see text]. Obtained values for bulk modulus B0 and its pressure derivative B[Formula: see text] in tetragonal phase are 30(7) GPa and 4(1), respectively.


2011 ◽  
Vol 696 ◽  
pp. 63-69 ◽  
Author(s):  
Shigenari Hayashi ◽  
Isao Saeki ◽  
Yoshitaka Nishiyama ◽  
Takashi Doi ◽  
Shoji Kyo ◽  
...  

Very thin Fe-coatings, ~50nm, were found to suppress metastable Al2O3 formation on Fe-50Al and Ni-50Al alloys in our previous study. The authors proposed a mechanism whereby α-Al2O3 precipitates from the Al-saturated Fe2O3, which was formed during initial oxidation, since α-Al2O3 and α-Fe2O3 have isomorphous structures. In order to confirm the proposed mechanism, in-situ measurements were made of structural changes in the oxide scales formed on FeAl with and without Fe coating during heating and subsequent isothermal high temperature oxidation by synchrotron radiation with a two-dimensional X-ray detector. Diffraction peaks from Fe2O3 were initially observed at around 350°C on Fe-coated samples. The lattice parameter of the Fe2O3 initially increased linearly due to thermal expansion, but then rapidly decreased due to the formation of a solid solution of Fe2O3-Al2O3. α-Al2O3 started to appear at around 800°C, but no peaks from metastable Al2O3 were observed. The diffraction peaks from the α-Al2O3 on Fe-coated samples consisted of two distinct peaks, indicating that the α-Al2O3 had two different lattice parameters. These results suggest that the α-Al2O3 was formed not only by precipitation from the Al-saturated Fe2O3, but also by oxidation of Al in the substrate.


Sign in / Sign up

Export Citation Format

Share Document