Optical equiphase filter approximation using segments of straight lines

1985 ◽  
Vol 63 (2) ◽  
pp. 246-249
Author(s):  
M. Lévesque ◽  
G. April ◽  
H. H. Arsenault

Phase filters may be used to modify the phase distribution on a wave front in order to correct distortions on the wave front or to create arbitrary phase distributions. Under certain conditions, the phase filter may be made by plotting the equiphases of the complex amplitude as lines of equal width, which may be done with a simple digital plotter. Such equiphase filters cause two types of problems: the overlapping of diffraction orders and the additional aberrations introduced when the equiphases are approximated by segments of straight lines plotted by a computer. The parameters that determine the useful field of the filtered phase distribution and the aberrations introduced by the filter are used to obtain an expression for the optimum length of the straight line segments that approximate the curved equiphases.


2014 ◽  
Vol 644-650 ◽  
pp. 2359-2365
Author(s):  
Xiao Bo Lin

In this paper, the average reprojection geometrical errors on all images of a spatial straight line is taken as the restructuring and optimization target function to ensure the optimal result to be acquired; a spatial straight line is expressed by use of the Plücker coordinates for the proposal of the analytical method of correcting the double linear restriction on the Plücker coordinates of noise-included spatial straight lines; during the optimization process, to ensure parameters that meet double linear restriction, the iteration renewal process is expressed by at least 4 parameters, to increase the precision of restructuring results. Experiments results derived from simulation data and real images have all demonstrated the high efficiency and precision of the algorithm proposed in this paper.



2009 ◽  
Vol 64 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Jochen Meidow ◽  
Christian Beder ◽  
Wolfgang Förstner


Author(s):  
Roi Santos Mateos ◽  
Xose M. Pardo ◽  
Xose R. Fdez-Vidal

This chapter serves as an introduction to 3D representations of scenes or Structure From Motion (SfM) from straight line segments. Lines are frequently found in captures of man-made environments, and in nature are mixed with more organic shapes. The inclusion of straight lines in 3D representations provide structural information about the captured shapes and their limits, such as the intersection of planar structures. Line based SfM methods are not frequent in the literature due to the difficulty of detecting them reliably, their morphological changes under changes of perspective and the challenges inherent to finding correspondences of segments in images between the different views. Additionally, compared to points, lines add the dimensionalities carried by the line directions and lengths, which prevents the epipolar constraint to be valid along a straight line segment between two different views. This chapter introduces the geometrical relations which have to be exploited for SfM sketch or abstraction based on line segments, the optimization methods for its optimization, and how to compare the experimental results with Ground-Truth measurements.



1979 ◽  
Vol 7 (1) ◽  
pp. 31-39
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract An automatic tread gaging machine has been developed. It consists of three component systems: (1) a laser gaging head, (2) a tire handling device, and (3) a computer that controls the movement of the tire handling machine, processes the data, and computes the least-squares straight line from which a wear rate may be estimated. Experimental tests show that the machine has good repeatability. In comparisons with measurements obtained by a hand gage, the automatic machine gives smaller average groove depths. The difference before and after a period of wear for both methods of measurement are the same. Wear rates estimated from the slopes of straight lines fitted to both sets of data are not significantly different.



2000 ◽  
Vol 43 (4) ◽  
pp. 437-440 ◽  
Author(s):  
Carlos Sérgio Agostinho

The viability of an alternative method for estimating the size at sexual maturity of females of Plagioscion squamosissimus (Perciformes, Sciaenidae) was analyzed. This methodology was used to evaluate the size at sexual maturity in crabs, but has not yet been used for this purpose in fishes. Separation of young and adult fishes by this method is accomplished by iterative adjustment of straight-line segments to the data for length of the otolith and length of the fish. The agreement with the estimate previously obtained by another technique and the possibility of calculating the variance indicates that in some cases, the method analyzed can be used successfully to estimate size at sexual maturity in fish. However, additional studies are necessary to detect possible biases in the method.



2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Dai ◽  
Naohiko Hanajima ◽  
Toshiharu Kazama ◽  
Akihiko Takashima

The improved path-generating regulator (PGR) is proposed to path track the circle/arc passage for two-wheeled robots. The PGR, which is a control method for robots so as to orient its heading toward the tangential direction of one of the curves belonging to the family of path functions, is applied to navigation problem originally. Driving environments for robots are usually roads, streets, paths, passages, and ridges. These tracks can be seen as they consist of straight lines and arcs. In the case of small interval, arc can be regarded as straight line approximately; therefore we extended the PGR to drive the robot move along circle/arc passage based on the theory that PGR to track the straight passage. In addition, the adjustable look-ahead method is proposed to improve the robot trajectory convergence property to the target circle/arc. The effectiveness is proved through MATLAB simulations on both the comparisons with the PGR and the improved PGR with adjustable look-ahead method. The results of numerical simulations show that the adjustable look-ahead method has better convergence property and stronger capacity of resisting disturbance.



Author(s):  
Shengzhi Du ◽  
Chunling Tu ◽  
Barend Jacobus van Wyk
Keyword(s):  


Author(s):  
Lixin He ◽  
Jing Yang ◽  
Bin Kong ◽  
Can Wang

It is one of very important and basic problem in compute vision field that recovering depth information of objects from two-dimensional images. In view of the shortcomings of existing methods of depth estimation, a novel approach based on SIFT (the Scale Invariant Feature Transform) is presented in this paper. The approach can estimate the depths of objects in two images which are captured by an un-calibrated ordinary monocular camera. In this approach, above all, the first image is captured. All of the camera parameters remain unchanged, and the second image is acquired after moving the camera a distance d along the optical axis. Then image segmentation and SIFT feature extraction are implemented on the two images separately, and objects in the images are matched. Lastly, an object depth can be computed by the lengths of a pair of straight line segments. In order to ensure that the best appropriate a pair of straight line segments are chose and reduce the computation, the theory of convex hull and the knowledge of triangle similarity are employed. The experimental results show our approach is effective and practical.



Author(s):  
A. Etemadi ◽  
J. P. Schmidt ◽  
G. Matas ◽  
J. Illingworth ◽  
J. Kittler


Sign in / Sign up

Export Citation Format

Share Document