The growth of gallium arsenide on Si(100) by molecular-beam epitaxy

1987 ◽  
Vol 65 (8) ◽  
pp. 904-908 ◽  
Author(s):  
W. T. Moore ◽  
R. L. S. Devine ◽  
P. Maigné ◽  
D. C. Houghton ◽  
J.-M. Baribeau ◽  
...  

The growth of GaAs on Si(100) directly and with Ge buffer layers has been carried out sequentially under ultra high vacuum conditions in a double-ended III–V and group IV molecular beam epitaxy system. These heterostructures were examined by cross-section transverse emission microscopy, Rutherford backscattering, X-ray diffraction, and photoluminescence spectroscopy.Dislocation densities were observed to be high [Formula: see text] near both the GaAs–Si and the Ge–Si interfaces and to decrease to ~5 × 108 cm−2 a few micrometres from these interfaces. No dislocations were observed to originate at the GaAs–Ge interface, but the threading dislocations existing in the Ge buffer layer were found to propagate across this interface without significant deviation. The crystalline quality of the GaAs grown on Ge buffer layers was comparable with that grown on Si directly. However, GaAs has not yet been grown on the highest quality Ge buffer layers obtainable.

2019 ◽  
Vol 52 (1) ◽  
pp. 168-170
Author(s):  
Mieczyslaw A. Pietrzyk ◽  
Aleksandra Wierzbicka ◽  
Marcin Stachowicz ◽  
Dawid Jarosz ◽  
Adrian Kozanecki

Control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic devices. This paper reports the growth conditions and structural properties of ZnMgO nanowalls grown on the Si face of 4H-SiC substrates by molecular beam epitaxy without catalysts and buffer layers. Images from scanning electron microscopy revealed that the ZnMgO nanowalls are arranged in parallel rows following the stripe morphology of the SiC surface, and their thickness is around 15 nm. The crystal quality of the structures was evaluated by X-ray diffraction measurements.


Author(s):  
В.В. Ратников ◽  
Д.В. Нечаев ◽  
А.В. Мясоедов ◽  
О.А. Кошелев ◽  
В.Н. Жмерик

Multiple-crystal X-ray diffraction and a multi-beam optical stress sensor were used to study AlN/c-sapphire templates grown by plasma-assisted molecular beam epitaxy. The influence of the nucleation and buffer layers growth regimes, temperature, the ratio between Al and N* growth fluxes on the stress generation and the character of the dislocation structure were analyzed. Templates with the best crystal quality with screw and edge threading dislocation densities in a range of 4∙10^8 and 8∙10^9 cm-2, respectively, were obtained at the flux ratio of Al to N* close to 1 by using two-stage temperature regimes.


2001 ◽  
Vol 693 ◽  
Author(s):  
M. A. Reshchikov ◽  
D. Huang ◽  
F. Yun ◽  
P. Visconti ◽  
T. King ◽  
...  

AbstractWe compared photoluminescence (PL) and cross-sectional transmission electron microscopy (TEM) characteristics of GaN samples with Ga and N polarities grown by molecular beam epitaxy (MBE) on sapphire substrates. Ga-polar films grown at low temperature typically have very smooth surfaces, which are extremely difficult to etch with acids or bases. In contrast, the N-polar films have rougher surfaces and can be easily etched in hot H3PO4 or KOH. The quality of the X-ray diffraction spectra is also much better in case of Ga-polar films. Surprisingly, PL efficiency is always much higher in the N-polar GaN, yet the features and shape of the PL spectra are comparable for both polarities. We concluded that, despite the excellent quality of the surface, MBE-grown Ga-polar GaN layers contain higher concentration of nonradiative defects. From the analyses of cross-sectional TEM investigations, we have found that Ga-polar films have high density of threading dislocations (5x109 cm-2) and low density of inversion domains (1x107 cm-2). For N-polar GaN the situation is the reverse: the density of dislocations and inversion domains are 5x108 and ~1x1011 cm-2, respectively. One of the important conclusions derived from the combined PL and TEM study is that inversion domains do not seem to affect the radiative efficiency very adversly, whereas dislocations reduce it significantly.


1997 ◽  
Vol 484 ◽  
Author(s):  
E. Abramof ◽  
S. O. Ferreira ◽  
P. H. O Rappl ◽  
A. Y. Ueta ◽  
C. Boschetti ◽  
...  

AbstractCaF2 layers were grown by molecular beam epitaxy on differently prepared Si(111) substrates. X-ray reflectivity spectra were measured and fitted. From the fitting process, the thickness of the CaF2 layer was precisely (within 1 Å) determined and the CaF2/Si interface roughness was also obtained. This roughness was used as an evaluation parameter for the quality of the layers. The CaF2/Si sample from which the intentional oxide was desorpted at 800°C inside the growth chamber exhibited the most clear x-ray reflectivity spectrum with very well resolved interference fringes. The epitaxial relations of the CaF2/Si samples grown at temperatures between 250 and 700°C were determined from x-ray diffraction analysis.


2003 ◽  
Vol 799 ◽  
Author(s):  
W. K. Cheah ◽  
W. J. Fan ◽  
S. F. Yoon ◽  
S. Wicaksono ◽  
R. Liu ◽  
...  

ABSTRACTLow temperature (4.5K) photoluminescence (PL) measurements of GaAs(N):Sb on GaAs grown by solid source molecular beam epitaxy (MBE) show a Sb-related defect peak at ∼1017nm (1.22eV). The magnitude of the Sb-related impurity PL peak corresponds in intensity with the prominence of the additional two-dimensional [115] high-resolution x-ray diffraction (HRXRD) defect peaks. The elimination of these defects can be a measure of the improvement in crystal quality of GaAsN:Sb and a Sb flux ≥ 1.3×10−8 Torr is needed to invoke the surfactant behavior in III-V dilute nitride MBE growth for a growth rate of 1μm/hr.


2002 ◽  
Vol 743 ◽  
Author(s):  
Jun Suda ◽  
Kouhei Miura ◽  
Misako Honaga ◽  
Norio Onojima ◽  
Yusuke Nishi ◽  
...  

ABSTRACTThe effects of SiC surface treatment on the lattice relaxation of AlN buffer layers and the crystalline quality of GaN layers grown on the buffer layers were studied. AlN buffer layers and GaN main layers were grown by plasma-assisted molecular-beam epitaxy on on-axis 6H-SiC (0001)Si substrates. High-temperature HCl-gas etching resulted in an atomically flat SiC surface with (√3×√3)R30° surface reconstruction, while HCl-gas etching followed by HF chemical treatment resulted in an atomically flat surface with (1×1) structure. The AlN layer grown on the (1×1) surface showed slower lattice relaxation. GaN grown on the AlN buffer layer exhibited a (0002) X-ray rocking curve of 70 arcsec and 107 cm−2 of screw-type dislocation density, which was superior than that of GaN grown on (√3×√3)R30° surface.


1995 ◽  
Vol 399 ◽  
Author(s):  
A. Gray ◽  
N.K. Dhar ◽  
W. Clark ◽  
P. Charlton ◽  
J.H. Dinan ◽  
...  

ABSTRACTX-ray diffraction spectra of CdTe epilayers grown with and without ZnTe buffer layers on <211> Si substrates by molecular beam epitaxy consist of 422 and 331 reflections. We interpret these as evidence for the existence of twins within the volume of a <211> oriented epilayer and show that twin volume is dependent on the ZnTe buffer layer and substrate misorientation.


2011 ◽  
Vol 323 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Hai Lin ◽  
Yijie Huo ◽  
Yiwen Rong ◽  
Robert Chen ◽  
Theodore I. Kamins ◽  
...  

1995 ◽  
Vol 386 ◽  
Author(s):  
W. Hansch ◽  
I. Eisele ◽  
H. Kibbel ◽  
U. KÖnig

ABSTRACTDifferent substrate cleaning procedures were used before fabrication of pin diodes by silicon molecular beam epitaxy (MBE). We investigated the quality of these diodes in order to demonstrate the superior quality of a low energy plasma cleaning in an ultra-high vacuum ( UHV). This plasma cleaning by hydrogen makes a wet-chemical cleaning or a high-temperature desorption step unnecessary. Moreover, the plasma-cleaned substrates are so strongly hydrogen passivated, that they can be transported through air and processed in another MBE chamber without any additional cleaning steps.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Sign in / Sign up

Export Citation Format

Share Document