A rocket measurement of the O2 Infrared Atmospheric (0–0) band emission in the dayglow and a determination of the mesospheric ozone and atomic oxygen densities

1988 ◽  
Vol 66 (11) ◽  
pp. 941-946 ◽  
Author(s):  
W. F. J. Evans ◽  
I. C. McDade ◽  
J. Yuen ◽  
E. J. Llewellyn

Rocket measurements of the [Formula: see text] IR Atmospheric (0–0) band emission in the sunlit mesosphere, which were coordinated with an overpass of the Solar Mesospheric Explorer (SME) satellite, are reported. The IR Atmospheric band volume emission rates, derived from the data obtained with a matching pair of 1.27 μm radiometers, are presented and compared with the emission rates inferred from limb-scan observations made with the near-infrared spectrometer on the SME satellite. The rocket measurements are used to derive the ozone and atomic oxygen number densities in the sunlit mesosphere. The derived concentrations are compared with those obtained from other observations and model calculations.

2018 ◽  
Vol 11 (1) ◽  
pp. 473-487 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.


2012 ◽  
Vol 117 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andrew B. Christensen ◽  
Jeng-Hwa Yee ◽  
Rebecca L. Bishop ◽  
Scott A. Budzien ◽  
James H. Hecht ◽  
...  

2017 ◽  
Author(s):  
Amirmahdi Zarboo ◽  
Stefan Bender ◽  
John P. Burrows ◽  
Johannes Orphal ◽  
Miriam Sinnhuber

Abstract. We present the retrieved volume emission rates (VER) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere/lower thermosphere (MLT). The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on-board the European Space Agency Envisat satellite observes upwelling radiances in limb viewing geometry during its special MLT mode over the range 50 to 150 km. In this study we use the limb observations in the visible (595–811 nm) and near infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VER of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) shows secondary maxima during winter and spring, which are related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSW). Observations of O2(1Δ) and O2(1Σ) airglow provide valuable information about both the chemistry and dynamics in the MLT and can be used to infer the amounts and distribution of ozone, solar heating rates and temperature in the MLT.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 149 ◽  
Author(s):  
Zifeng Lu ◽  
Jinghang Zhang ◽  
Hua Liu ◽  
Jialin Xu ◽  
Jinhuan Li

In the Hadamard transform (HT) near-infrared (NIR) spectrometer, there are defects that can create a nonuniform distribution of spectral energy, significantly influencing the absorbance of the whole spectrum, generating stray light, and making the signal-to-noise ratio (SNR) of the spectrum inconsistent. To address this issue and improve the performance of the digital micromirror device (DMD) Hadamard transform near-infrared spectrometer, a split waveband scan mode is proposed to mitigate the impact of the stray light, and a new Hadamard mask of variable-width stripes is put forward to improve the SNR of the spectrometer. The results of the simulations and experiments indicate that by the new scan mode and Hadamard mask, the influence of stray light is restrained and reduced. In addition, the SNR of the spectrometer also is increased.


NIR news ◽  
2019 ◽  
Vol 30 (5-6) ◽  
pp. 35-38
Author(s):  
Verena Wiedemair ◽  
Christian Wolfgang Huck

The use of ever smaller near-infrared instruments is becoming more and more prevalent, since they are cheaper, more versatile and often advertised as high-performance spectrometer. The last claim is rarely verified by independent researchers, which is why the presented work evaluates the performance of three hand-held spectrometers in comparison to a benchtop instrument. Seventy-seven samples comprising buckwheat, millet and oat were investigated for their total antioxidant capacity using Folin–Ciocalteu and near-infrared spectroscopy. Partial least squares regression models were established using cross- and test set validation. Results showed that all instruments were able to predict total antioxidant capacity to some extent. The coefficients of determinations ranged from 0.823 to 0.951 for cross-validated and from 0.849 to 0.952 for test set validated models. Errors for cross-validated models ranged from 1.11 to 2.08 mgGAE/g and for test set validated models from 1.02 to 1.86 mgGAE/g.


2021 ◽  
Author(s):  
Russell Farrugia ◽  
Barnaby Portelli ◽  
Ivan Grech ◽  
Joseph Micallef ◽  
Owen Casha ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nima Khavanin ◽  
Halley Darrach ◽  
Franca Kraenzlin ◽  
Pooja S. Yesantharao ◽  
Justin M. Sacks

Sign in / Sign up

Export Citation Format

Share Document