Case study of a relict iceberg scour exposed at Scarborough Bluffs, Toronto, Ontario: implications for pipeline engineering

2002 ◽  
Vol 39 (3) ◽  
pp. 519-534 ◽  
Author(s):  
David J Eden ◽  
Nicholas Eyles

Ice scour is a common process on high latitude shelves and has been studied extensively though laboratory and numerical modelling. Direct observations of ice scours in outcrop are very rare. This paper describes a Late Pleistocene iceberg scour observable in soil cliff exposures at Cudia Park, Scarborough Bluffs, Toronto, Ontario. The structure is cut into a glaciolacustrine clayey silt, is about 10 m wide and 4 m deep, and is filled with sands deposited in shallow water. A description of the scour and a simplified finite element model of sub-ice scour soil deformation are presented. It is estimated that the Cudia scour was caused by a small iceberg with a mass of 0.04 Mt, in a water depth between 10 and 30 m, acting with a downward force of 5 MN, which is consistent with modern iceberg scours. The relevance of the Cudia scour to pipeline engineering (design burial depths) is demonstrated, with reference to the design methodology of the Centre for Cold Ocean Research and Engineering (C-CORE). The Cudia scour provides an additional outcrop example of a subscour bearing capacity-type failure and is the only outcrop example to date with lateral berm piles, which are a characteristic part of modern iceberg scours.Key words: iceberg scour, Scarborough Bluffs, pipeline engineering, finite element modelling, Pleistocene geology.

Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


2018 ◽  
Vol 4 (2) ◽  
pp. 1 ◽  
Author(s):  
Angelica Campigotto ◽  
Stephane Leahy ◽  
Ayan Choudhury ◽  
Guowei Zhao ◽  
Yongjun Lai

A novel, inexpensive, and easy-to-use strain sensor using polydimethylsiloxane (PDMS)  was developed. The sensor consists of a microchannel that is partially filled with a coloured liquid and embedded in a piece of PDMS. A finite element model was developed to optimize the geometry of the microchannel to achieve higher sensitivity. The highest gauge factor that was measured experimentally was 41. The gauge factor was affected by the microchannel’s square cross-sectional area, the number of basic units in the microchannel, and the inlet and outlet configuration. As a case study, the developed strain sensors were used to measure the rotation angle of the wrist and finger joints.


2015 ◽  
Vol 1 (1) ◽  
pp. 507-509
Author(s):  
H. Martin ◽  
N. Gutteck ◽  
J.-B. Matthies ◽  
T. Hanke ◽  
G. Gradl ◽  
...  

AbstractIn order to demonstrate the influence of the boundary conditions in experimental biomechanical investigations of arthrodesis implants two different models were investigated. As basic model, a simplified finite element model of the cortical bone was used in order to compare the stress values with (Model 1) and without (Model 2) allowing horizontal displacements of the load application point. The model without constraints of horizontal displacements showed considerably higher stress values at the point of failure. Moreover, this investigation shows that the boundary conditions (e.g. constraints) have to be carefully considered, since simplifications of the reality with experimental tests cannot always be avoided.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Jonathan Slocum ◽  
Kenneth Kamrin ◽  
Alexander Slocum

A force-limiting buckling flexure has been created which can be used in a wide range of applications where excessive force from an implement can cause harm or damage. The buckling flexure is monolithic, contains no electronics, and can be manufactured using a single shot in an injection molding machine, making it cost effective. In this paper, the design of the flexure is applied to a force-limiting toothbrush as a design study to show its application in a real-world technology. An overview of the buckling flexure is presented, and a structural model is presented to predict when the flexure will elastically buckle. Flexures of different geometries were tested and buckled. The data show that the model can predict buckling of the flexure with an error of 20.84%. A finite element model was also performed which predicts buckling of the flexure within an error of 25.35%. Furthermore, a preliminary model is presented which enables the design of the buckling beam’s displacement, such that the total breakaway deformation can be maximized, making sensing the sudden deformation easier to detect. As part of the application of the buckling flexure, an ergonomic, injection moldable toothbrush was created with the flexure built into the neck of the brush. When the user applies too much force while brushing, the flexure gives way and alerts the user when they have applied too much force; when the user lets off the force, the brush snaps back to its original shape. This design methodology is generalized and can be utilized in other force limited applications where an injection-moldable, pre-set force, and purely mechanical breakaway device is desired.


2020 ◽  
Author(s):  
Mario Manzo ◽  
Giuseppe Lamanna ◽  
Francesco Di Caprio ◽  
Antonio Chiariello ◽  
Paul Schatrow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document