Neural network approach to model the limit state surface for reliability analysis

2003 ◽  
Vol 40 (6) ◽  
pp. 1235-1244 ◽  
Author(s):  
Anthony TC Goh ◽  
Fred H Kulhawy

Structural reliability methods are often used to evaluate the failure performance of geotechnical structures. A common approach is to use the first-order reliability method. Its popularity results from the mathematical simplicity of the method, since only second moment information (mean and coefficient of variation) on the random variables is required. The probability of failure is then assessed by an index known commonly as the reliability index. One critical aspect in determining the reliability index is the explicit definition of the limit state surface of the system. In a problem involving multi-dimensional random variables, the limit state surface is the boundary separating the safe domain from the "failure" (or lack of serviceability) domain. In many complicated and nonlinear problems where the analyses involve the use of numerical procedures such as the finite element method, this surface may be difficult to determine explicitly in terms of the random variables, and therefore the limit state can only be expressed implicitly rather than in a closed-form solution. It is proposed in this paper to use an artificial intelligence technique known as the back-propagation neural network algorithm to model the limit state surface. First, the failure domain is found through repeated point-by-point numerical analyses with different input values. The neural network is then trained on this set of data. Using the optimal weights of the neural network connections, it is possible to develop a mathematical expression relating the input and output variables that approximates the limit state surface. Some examples are given to illustrate the application and accuracy of the proposed approach.Key words: first-order reliability method, geotechnical structures, limit state surface, neural networks, reliability.

Author(s):  
Umberto Alibrandi ◽  
C. G. Koh

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis in the presence of random parameters and interval uncertain parameters. In the proposed formulation, the hybrid problem is reduced to standard reliability problems, where the limit state functions are defined only in terms of the random variables. Monte Carlo simulation (MCS) for hybrid reliability analysis (HRA) is presented, and it is shown that it requires a tremendous computational effort; FORM for HRA is more efficient but still demanding. The computational cost is significantly reduced through a simplified procedure, which gives good approximations of the design points, by requiring only three classical FORMs and one interval analysis (IA), developed herein through an optimization procedure. FORM for HRA and its simplified formulation achieve a much improved efficiency than MCS by several orders of magnitude, and it can thus be applied to real-world engineering problems. Representative examples of stochastic dynamic analysis and performance-based engineering are presented.


2021 ◽  
Vol 11 (2) ◽  
pp. 648
Author(s):  
Agnieszka Dudzik ◽  
Beata Potrzeszcz-Sut

The objective of the article involves presenting two approaches to the structure reliability analysis. The primary research method was the First Order Reliability Method (FORM). The Hasofer–Lind reliability index β in conjunction with transformation method in the FORM was adopted as the measure of reliability. The first proposal was combining NUMPRESS software with the non-commercial KRATA program. In this case, the implicit form of the random variables function was created. Limit state function was symbolically given in the standard math notation as a function of the basic random and external variables. The second analysis proposed a hybrid approach enabling the introduction of explicit forms of limit state functions to the reliability program. To create the descriptions of this formula, the neural networks were used and our own original FEM module. The combination of conventional and neural computing can be seen as a hybrid system. The explicit functions were implemented into NUMPRESS software. The values of the reliability index for different descriptions of the mathematical model of the structure were determined. The proposed hybrid approach allowed us to obtain similar results to the results from the reference method.


Author(s):  
Caio Cesar Cardoso da Silva ◽  
Mauro de Vasconcellos Real ◽  
Samir Maghous

abstract: The Monte Carlo simulation (MCS) and First-Order Reliability Method (FORM) provide a reliability analysis in axisymmetric deep tunnels driven in elastoplastic rocks. The Convergence-Confinement method (CV-CF) and Mohr-Coulomb (M-C) criterion are used to model the mechanical interaction between the shotcrete lining and ground through deterministic parameters and random variables. Numerical models synchronize tunnel analytical models and reliability methods, whereas the limit state functions control the failure probability in both ground plastic zone and shotcrete lining. The results showed that a low dispersion of random variables affects the plastic zone's reliability analysis in unsupported tunnels. Moreover, the support pressure generates a significant reduction in the plastic zone's failure, whereas the increase of shotcrete thickness results in great reduction of the lining collapse probability.


Author(s):  
Sheng-Tong Zhou ◽  
Di Wang ◽  
Qian Xiao ◽  
Jian-min Zhou ◽  
Hong-Guang Li ◽  
...  

Hasofer-Lind and Rackwtiz-Fiessler (HLRF) method is an efficient iterative algorithm for locating the most probable failure point and calculating the first order reliability index in structural reliability analysis. However, this method may encounter numerical instability problems for high nonlinear limit state function (LSF). In this paper, an improved HLRF-based first order reliability method is developed based on a modified Armijo line search rule and an interpolation-based step size backtracking scheme to improve the robustness and efficiency of the original HLRF method. Compared with other improved HLRF-based methods, the proposed method can not only guarantee the global convergence but also adaptively estimate some sensitive algorithm parameters, such as initial step size, step-size reduction coefficient, using the current known iterative information. Ten selected examples with high nonlinear LSFs are used to compare the robustness and efficiency of the proposed method with the original HLRF method and the improved HLRF (iHLRF) method. Results indicate that the proposed method is not only more computationally efficient but also less sensitive to the remaining user-defined algorithm parameters than the iHLRF method.


Author(s):  
Zhenzhong Chen ◽  
Zihao Wu ◽  
Xiaoke Li ◽  
Ge Chen ◽  
Guangfeng Chen ◽  
...  

The first-order reliability method is widely used for structural reliability analysis; however, its accuracy would become worse for nonlinear problems. This paper proposes the accuracy analysis method of the first-order reliability method, which considers the worst cases when using the first-order reliability method and gives the possible value range of the probability of safety. The accuracy analysis method can evaluate the reliability level of the first-order reliability method when the failure surfaces are nonlinear. The calculation formula for the possible value range of the probability of safety is proposed, and its trend as the dimensions and reliability rise is also discussed in this paper. A numerical example and a honeycomb crashworthiness design are presented to validate the accuracy of the first-order reliability method, and the results show that they are located within the possible value range proposed in this paper.


Author(s):  
Zhangli Hu ◽  
Xiaoping Du

In traditional reliability problems, the distribution of a basic random variable is usually unimodal; in other words, the probability density of the basic random variable has only one peak. In real applications, some basic random variables may follow bimodal distributions with two peaks in their probability density. When binomial variables are involved, traditional reliability methods, such as the first-order second moment (FOSM) method and the first-order reliability method (FORM), will not be accurate. This study investigates the accuracy of using the saddlepoint approximation (SPA) for bimodal variables and then employs SPA-based reliability methods with first-order approximation to predict the reliability. A limit-state function is at first approximated with the first-order Taylor expansion so that it becomes a linear combination of the basic random variables, some of which are bimodally distributed. The SPA is then applied to estimate the reliability. Examples show that the SPA-based reliability methods are more accurate than FOSM and FORM.


2014 ◽  
Vol 567 ◽  
pp. 307-312 ◽  
Author(s):  
V. John Kurian ◽  
Mohamed Mubarak Abdul Wahab ◽  
T.S. Kheang ◽  
Mohd Shahir Liew

The objective of this work is to determine the structural reliability of an existing jacket platform in Malaysia, by determining the system probability of failure and its corresponding reliability index. These two parameters are important indicators for assessing the integrity and reliability of the platform, and will point out whether the platform is suitable for continued operation. In this study, pushover analysis is used to determine possible failure paths of the structure, while First Order Reliability Method (FORM) and Simple Bound Formula are used to determine the failure probability and reliability index. Three failure paths of the platform are established. The reliability index of these paths is found with the highest Reliability Indexto be 18.82 from the 315-degree path, while the system reliability index is 9.23. This illustrates that the platform is robust and the chances of collapse is very small.


2014 ◽  
Vol 945-949 ◽  
pp. 1159-1162
Author(s):  
Wei Tao Zhao ◽  
Xiao Li ◽  
Feng Guo

Reliability of laminate structure is deeply influenced by uncertainties such as fiber properties, loads and design sizes. It is very difficult to evaluate the reliability and sensitivity of laminate structure because that laminate structure is anisotropic and the limit state function (LSF) is a high nonlinear function. In this paper, reliability and sensitivity are evaluated by using first order reliability method (FORM), response surface method (RSM) and Monte Carlo simulation (MCS). The study aims to find a numerical method to evaluate the reliability and sensitivity of laminate structures efficiently and accurately. An example of laminate with a large number of variables is analyzed. The results obtained by using different methods are compared in terms of efficiency and accuracy. It is shown that FORM is not accuracy, and RSM has a very good accuracy and efficient in terms of reliability, but the accuracy of sensitivity obtained by using RSM is not good enough.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Zhang ◽  
Jiwei Qiu ◽  
Pidong Wang

This paper presents a novel procedure based on first-order reliability method (FORM) for structural reliability analysis with hybrid variables, that is, random and interval variables. This method can significantly improve the computational efficiency for the abovementioned hybrid reliability analysis (HRA), while generally providing sufficient precision. In the proposed procedure, the hybrid problem is reduced to standard reliability problem with the polar coordinates, where an n-dimensional limit-state function is defined only in terms of two random variables. Firstly, the linear Taylor series is used to approximate the limit-state function around the design point. Subsequently, with the approximation of the n-dimensional limit-state function, the new bidimensional limit state is established by the polar coordinate transformation. And the probability density functions (PDFs) of the two variables can be obtained by the PDFs of random variables and bounds of interval variables. Then, the interval of failure probability is efficiently calculated by the integral method. At last, one simple problem with explicit expressions and one engineering application of spacecraft docking lock are employed to demonstrate the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document