failure path
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 49
Author(s):  
Luigi Aiello ◽  
Ilie Hanzu ◽  
Gregor Gstrein ◽  
Eduard Ewert ◽  
Christian Ellersdorfer ◽  
...  

In this paper, tests and analysis of thermal runaway propagation for commercial modules consisting of four 41 Ah Li-ion pouch cells are presented. Module samples were tested at 100% state-of-charge and mechanically constrained between two steel plates to provide thermal and mechanical contact between the parts. Voltage and temperature of each cell were monitored during the whole experiment. The triggering of the exothermal reactions was obtained by overheating one cell of the stack with a flat steel heater. In preliminary studies, the melting temperature of the separator was measured (from an extracted sample) with differential scanning calorimetry and thermogravimetric analysis techniques, revealing a tri-layers separator with two melting points (≈135 °C and ≈170 °C). The tests on module level revealed 8 distinct phases observed and analyzed in the respective temperature ranges, including smoking, venting, sparkling, and massive, short circuit condition. The triggering temperature of the cells resulted to be close to the melting temperature of the separator obtained in preliminary tests, confirming that the violent exothermal reactions of thermal runaway are caused by the internal separator failure. Postmortem inspections of the modules revealed the internal electrical failure path in one cell and the propagation of the internal short circuit in its active material volume, suggesting that the expansion of the electrolyte plays a role in the short circuit propagation at the single cell level. The complete thermal runaway propagation process was repeated on 5 modules and ended on average 60 s after the first thermal runaway triggered cell reached a top temperature of 1100 °C.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Filippo Migliorini ◽  
Alice Baroncini ◽  
Yasser El Mansy ◽  
Valentin Quack ◽  
Andreas Prescher ◽  
...  

Abstract Background A novel implant for occipitocervical fusion consisting of a median plate with an additional hook inserting in the foramen magnum was tested. Aim of this study was to test the stability of a new implant for occipitocervical fusion against the already available and employed median plate implant without hook. Material and method 36 rigid polyurethane foams occipital artificial bones were used. The two occipital implants, namely the occipital plate with hook (Group 1) and the one without hook (Group 2), were applied to the artificial occiput trough three occipital screws and ensured into the experimental setup trough a crossbar. The test parameters were set using the testing machine software as follows: (1) test speed: 10 mm/ min, with 25 mm/ min maximum; (2) preload: 5 N; (3) force switch-off threshold: 90% force drop from F_max. Failure force and path were recorded. Failure force is defined as the maximum reaction force under which failure occurs (F_max), while failure path is the travel path during which failure occurs (dL). Results Group 1 (plate with hook) showed a mean failure force of 459.3 ± 35.9 N and a mean failure path of 5.8 ± 0.3 mm Group 2 (plate without hook) showed a mean failure force of 323.9 ± 20.2 N and a mean failure path of 7.2 ± 0.4 mm. The Shapiro-Wilk test score was not significant (P >  0.1), assuming that data were normally distributed. Group 1 had a statistically significant greater F_max (+ 135.37; P >  0.0001) and less dL (− 1.52; P > 0.0001) compared to group 2. Conclusions Medial plates with foramen magnum hooks showed to be more stable that plates without a hook. These new implants may represent a new tool in OCJ fixation, but further studies are required to investigate their behavior in an anatomical setting.


2021 ◽  
Vol 18 (8) ◽  
Author(s):  
Buqiao Fan ◽  
Xun’an Zhang ◽  
Mustapha Abdulhadi ◽  
Muhammad Moman ◽  
Zhihao Wang

2020 ◽  
Vol 157 ◽  
pp. 107012 ◽  
Author(s):  
Xing Fu ◽  
Wen-Long Du ◽  
Hong-Nan Li ◽  
Gang Li ◽  
Zhi-Qian Dong ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 2274-2283 ◽  
Author(s):  
Yuxiao Liu ◽  
Yi Wang ◽  
Pei Yong ◽  
Ning Zhang ◽  
Chongqing Kang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kun He ◽  
Liang Pei ◽  
Xiang Lu ◽  
Jiankang Chen ◽  
Zhenyu Wu

Dam is an important part of the national infrastructure, and its safety has been widely concerned. Risk identification of dams plays a significant role in risk assessment and control. Finding out some critical failure paths through adopting timely measures can help reduce the risk occurrence probability effectively. This paper develops an identification method based on the credibility and the interval analytic hierarchy process (IAHP) methods, namely, consistency and difference-based interval analytic hierarchy process (CDB-IAHP) method, to identify the critical failure paths of dams exactly considering the dynamic cognition degree of decision-makers. Based on the fault tree analysis (FTA) method, the framework and analysis for critical failure paths identification of a gravity dam and an Earth-rockfill dam are conducted and made. The results show that the critical failure paths obtained by the proposed method are in line with the statistical data, and the importance of disaster causing factors has some difference with the traditional method. Additionally, some engineering and nonengineering measures are suggested to reduce the impact of potential failure paths. The applications demonstrate that the proposed method shows good applicability for risk analysis and critical failure path mining of dams.


Author(s):  
Gang Zheng ◽  
Yawei Lei ◽  
Xuesong Cheng ◽  
Xiyuan Li ◽  
Ruozhan Wang

Collapses of braced or tied-back excavations have frequently occurred. However, the influence of the failure of some retaining structure members on the overall safety performance of a retaining system has not been studied. Model tests of failures of retaining piles, struts or anchors were conducted in this study, and the load transfer mechanisms underlying these conditions were analysed. When failures or large deformations occurred in certain piles, the increasing ratios of the bending moments in adjacent piles were much larger in the braced retaining system than in the cantilever system and more easily triggered progressive failure. When the strut elevation was lower or the excavation depth was greater, the degree of influence and range of pile failures became larger. When certain struts/anchors failed, their loads transferred to a few adjacent struts/anchors, possibly leading to further strut/anchor failure. The influence mechanisms of strut or anchor failure on piles were different from those of pile failure. As the number of failed struts or anchors increases, the bending moments of the piles in the failure zone first decrease and then increase to very high values. Therefore, the progressive failure path extends from struts/anchors to piles and will lead to large-scale collapse.


Sign in / Sign up

Export Citation Format

Share Document