Soil behaviour through field instrumentation

2005 ◽  
Vol 42 (2) ◽  
pp. 475-490 ◽  
Author(s):  
Sadik Oztoprak ◽  
S Feyza Cinicioglu

An improved version of the observational method is developed and proposed. The method uses field measurements as the direct inputs to the framework of the constitutive behaviour and analyses the behaviour synchronously as measurements are recorded. The method is developed for the specific case of embankments on soft clays, and its effectiveness is tested on a well-documented case history. The framework provided for the application of the method is basically the idealized stress space of the critical state theory, but the constitutive anisotropic elastoplastic soil model is added to this framework to analyse the behaviour and provide direct links between measurements and design parameters. Strain-rate dependency of the soft soils is also incorporated in the interpretation of the behaviour. To consider the variation in the behaviour of foundation soils, a zonation system is applied. Stress axis rotation is considered for active and passive regions effectively. Substantial savings can be achieved using the method in terms of time and cost, and the method is reliable. In addition, such an application improves the understanding of the real behaviour of soils.Key words: soft clays, embankment, observational method, rate effect, anisotropy, soil structure.

Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 95-127
Author(s):  
António Viana da Fonseca ◽  
Diana Cordeiro ◽  
Fausto Molina-Gómez

The critical state theory is a robust conceptual framework for the characterisation of soil behaviour. In the laboratory, triaxial tests are used to assess the critical state locus. In the last decades, the equipment and testing procedures for soil characterisation, within the critical state framework, have advanced to obtain accurate and reliable results. This review paper summarises and describes a series of recommended laboratory procedures to assess the critical state locus in cohesionless soils. For this purpose, results obtained in the laboratory from different cohesionless soils and triaxial equipment configurations are compiled, analysed and discussed in detail. The procedures presented in this paper reinforce the use of triaxial cells with lubricated end platens and an embedded connection piston into the top-cap, together with the verification of the full saturation condition and the measurement end-of-test water content—preferable using the soil freezing technique. The experimental evidence and comparison between equipment configurations provide relevant insights about the laboratory procedures for obtaining a reliable characterisation of the critical state locus of cohesionless geomaterials. All the procedures recommended herein can be easily implemented in academic and commercial geotechnical laboratories.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Panpan Guo ◽  
Gang Lei ◽  
Lina Luo ◽  
Xiaonan Gong ◽  
Yixian Wang ◽  
...  

This paper describes recent advances in the effect of soil creep on the time-dependent deformation of deep braced excavation. The effect of soil creep is generally investigated using the observational method and the plain-strain numerical simulation method. The observational method is more applicable for deep braced excavations in soft clays constructed using the top-down method. The plain-strain numerical simulation method can be conveniently used for parametric analysis, but it is unable to capture the spatial characteristics of soil creep effect on lateral wall deflections and ground movements. The additional lateral wall deflections and ground movements that are generated due to the soil creep effect can account for as large as 30% of the total displacements, which highlights the importance of considering the effect of soil creep in deep braced excavations through soft clays. The magnitude of the displacements due to soil creep depends on various factors, such as excavation depth, elapsed period, unsupported length, and strut stiffness. Parametric analyses have indicated several effective measures that can be taken in practice to mitigate the detrimental effect of soil creep on the deformation of deep braced excavation. Based on the literature review, potential directions of the related future research work are discussed. This paper should be beneficial for both researchers and engineers focusing on mitigating the adverse effect of soil creep on the stability of deep braced excavations.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-6
Author(s):  
Francisco Lopes ◽  
Osvangivaldo Oliveira ◽  
Marcio Almeida

The log of a SPT in very soft clay may simply indicate a zero blow-count, or present information on the penetration – under self-weight – of the composition (sampler, rods and hammer) as recommended by some standards. The second type of information is often disregarded by design engineers due to the lack of a standard procedure for measuring these penetrations or because the test is regarded as not sensitive enough to give an indication on the undrained shear strength of soft clays. The penetration under the composition’s selfweight, however, can indicate the magnitude of Su, which, along with other more specific and sensitive tests, can help in assessing the spatial distribution of clay consistency in a large deposit. A proposed test procedure and interpretation had been given in an earlier technical note. This note presents an extended formulation and an evaluation of Su via the SPT at a construction site in Rio de Janeiro, including comparisons with results of piezocone and vane tests. The values of Su obtained with the SPT lie between the profiles given by vane tests, corrected by Plasticity Index, and the Critical State Theory, the latter representing a lower bound to the clay strength.


Author(s):  
S. Neelamani ◽  
Bassam N. Shuhaibar ◽  
Khaled Al-Salem ◽  
Yousef Al-Osairi ◽  
Qusaie E. Karam ◽  
...  

Abstract Maintaining and retaining a quality sandy beach is a primary requirement for attracting people and tourists in any coastal country. Tourism Enterprises Company (TEC) in Kuwait owns 230 m long sandy beach in Ras Al-Ardh Sea Club, Salmiya, Kuwait. The beach has been eroding because of strong hydrodynamics forces from waves and currents. TEC wants to develop a stable sandy beach of 30 m wide. Kuwait Institute for Scientific Research (KISR), Kuwait is assigned to carry out the required scientific studies. In order to make sure a stable quality beach will exist, KISR has carried out the needed studies, which involves the field measurements such as bbathymetry survey, current and tidal variations, physical characteristics of beach soil, beach and sea bed profile, establishing the design parameters such as waves, currents, tide and wind. Hydrodynamic model study using DELFT3D model for the present and for the proposed extended groin conditions with beach nourishment were carried out. Also numerical modeling using GENESIS model to understand the future shore line changes due to the proposed development was carried out. Design of Groins to estimate the weight of armor units and weight of inner layers were carried out. The particle size and quantity of sand needed for reclamation of 30 m wide beach was estimated. Based on the study, it is recommended that the sandy soil to be used for 30 m wide beach nourishment should have D50 greater than 0.42 mm (say 0.5 mm) and D10 greater than 0.25 mm. The borrow pit much be selected by keeping this soil characters in mind. It is recommended to use a submerged offshore breakwater in order to retain the beach sand in place and for reducing the maintenance nourishment. Otherwise, large quantity of the capital nourished beach sand will escape into the deeper water due to strong current coupled with waves and steep seabed slopes. Environmental Impact Study was carried out as per Kuwait Environment Public Authority requirements to bring out the impacts due to beach filling and the construction submerged offshore barrier and extension of east groin for a distance of 30 m. TEC will implement the recommendations for developing the beach in Ras Al-Ardh sea club and will be useful to attract more people to use this beach.


2016 ◽  
Vol 53 (12) ◽  
pp. 1978-1990 ◽  
Author(s):  
J. Zheng ◽  
M.S. Hossain ◽  
D. Wang

Spudcan punch-through during installation and preloading process is one of the key concerns for the jack-up industry. This incident occurs in layered deposits, with new design approaches for spudcan penetration in sand-over-clay deposits reported recently. This paper reports a novel design approach for spudcan penetration in stiff-over-soft clay deposits. Large-deformation finite element (LDFE) analyses were carried out using the Coupled Eulerian–Lagrangian (CEL) approach. The clay was modelled using the extended elastic – perfectly plastic Tresca soil model allowing strain softening and rate dependency of the undrained shear strength. A detailed parametric study was undertaken, varying the strength ratio between bottom and top soil layers, the thickness of the top layer relative to the spudcan diameter, and degree of nonhomogeneity of the bottom layer. Existing data from centrifuge model tests were first used to validate the LDFE results, and then the measured and computed datasets were used to develop the formulas in the proposed design approach. The approach accounts for the soil plug in the bottom layer, and the corresponding additional resistance. Where there is the potential for punch-through, the approach provides estimations of the depth and bearing capacity at punch-through, the bearing capacity at the stiff–soft layer interface, and the bearing capacity in the bottom layer. Comparison shows that the punch-through method suggested in ISO standard 19905-1 provides a conservative estimate of the bearing capacity at punch-through, with guidelines provided to improve the method.


Sign in / Sign up

Export Citation Format

Share Document