Coastal Engineering Analysis, Field Measurements, Numerical Modeling and Design for the Optimized Extension of the Beach in Ras Al-Ardh Area, Salmiya, Kuwait

Author(s):  
S. Neelamani ◽  
Bassam N. Shuhaibar ◽  
Khaled Al-Salem ◽  
Yousef Al-Osairi ◽  
Qusaie E. Karam ◽  
...  

Abstract Maintaining and retaining a quality sandy beach is a primary requirement for attracting people and tourists in any coastal country. Tourism Enterprises Company (TEC) in Kuwait owns 230 m long sandy beach in Ras Al-Ardh Sea Club, Salmiya, Kuwait. The beach has been eroding because of strong hydrodynamics forces from waves and currents. TEC wants to develop a stable sandy beach of 30 m wide. Kuwait Institute for Scientific Research (KISR), Kuwait is assigned to carry out the required scientific studies. In order to make sure a stable quality beach will exist, KISR has carried out the needed studies, which involves the field measurements such as bbathymetry survey, current and tidal variations, physical characteristics of beach soil, beach and sea bed profile, establishing the design parameters such as waves, currents, tide and wind. Hydrodynamic model study using DELFT3D model for the present and for the proposed extended groin conditions with beach nourishment were carried out. Also numerical modeling using GENESIS model to understand the future shore line changes due to the proposed development was carried out. Design of Groins to estimate the weight of armor units and weight of inner layers were carried out. The particle size and quantity of sand needed for reclamation of 30 m wide beach was estimated. Based on the study, it is recommended that the sandy soil to be used for 30 m wide beach nourishment should have D50 greater than 0.42 mm (say 0.5 mm) and D10 greater than 0.25 mm. The borrow pit much be selected by keeping this soil characters in mind. It is recommended to use a submerged offshore breakwater in order to retain the beach sand in place and for reducing the maintenance nourishment. Otherwise, large quantity of the capital nourished beach sand will escape into the deeper water due to strong current coupled with waves and steep seabed slopes. Environmental Impact Study was carried out as per Kuwait Environment Public Authority requirements to bring out the impacts due to beach filling and the construction submerged offshore barrier and extension of east groin for a distance of 30 m. TEC will implement the recommendations for developing the beach in Ras Al-Ardh sea club and will be useful to attract more people to use this beach.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 458
Author(s):  
Drew C. Baird ◽  
Benjamin Abban ◽  
S. Michael Scurlock ◽  
Steven B. Abt ◽  
Christopher I. Thornton

While there are a wide range of design recommendations for using rock vanes and bendway weirs as streambank protection measures, no comprehensive, standard approach is currently available for design engineers to evaluate their hydraulic performance before construction. This study investigates using 2D numerical modeling as an option for predicting the hydraulic performance of rock vane and bendway weir structure designs for streambank protection. We used the Sedimentation and River Hydraulics (SRH)-2D depth-averaged numerical model to simulate flows around rock vane and bendway weir installations that were previously examined as part of a physical model study and that had water surface elevation and velocity observations. Overall, SRH-2D predicted the same general flow patterns as the physical model, but over- and underpredicted the flow velocity in some areas. These over- and underpredictions could be primarily attributed to the assumption of negligible vertical velocities. Nonetheless, the point differences between the predicted and observed velocities generally ranged from 15 to 25%, with some exceptions. The results showed that 2D numerical models could provide adequate insight into the hydraulic performance of rock vanes and bendway weirs. Accordingly, design guidance and implications of the study results are presented for design engineers.


2013 ◽  
Vol 69 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Yanling Li ◽  
Roger W. Babcock

Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.


Author(s):  
J.-S. Zhang ◽  
Y. Zhang ◽  
C. Zhang ◽  
D.-S. Jeng

In this paper, a numerical model is developed to study the dynamic response of a porous seabed to combined wave-current loadings. While the Reynolds-averaged Navier–Stokes equations with k-ε turbulence closure scheme and internal wave-maker function are solved for the phenomenon of wave-current interaction, Biot's poro-elastic “u-p” model is adopted for the seabed response. After validated by the laboratory measurements, this model is applied for the investigation of the effects of waves and currents on the wave-current induced pore pressures. Furthermore, the effects of currents on maximum liquefaction depths of a porous seabed is examined, and it is concluded that the opposite currents will increase the liquefaction depth up to 30% of that without currents.


Author(s):  
Я.Б. Немировский ◽  
И.В. Шепеленко ◽  
С.Е. Шейкин ◽  
Ю.А. Цеханов ◽  
Ф.Й. Златопольский ◽  
...  

Разработан алгоритм и проведена оценка прочности сборных твердосплавных элементов со сплошной и дискретной рабочими поверхностями. Получены зависимости, позволяющие установить связь между конструктивными параметрами сборных деформирующих инструментов и их прочностью. Выполнены прочностные расчеты деформирующего инструмента для обработки отверстий значительного диаметра со сплошной и дискретной рабочими поверхностями. Численным моделированием, методом конечных элементов получены распределения эквивалентных напряжений в элементах инструмента и контактных напряжений по поверхности контакта твердосплавная вставка-корпус, что позволило проанализировать прочность инструмента под нагрузкой. Определены конструктивные параметры инструмента и приведены алгоритмы последовательности расчета сборных деформирующих элементов (ДЭ). Разработан алгоритм последовательности расчета сборного ДЭ для дискретного протягивания. Предложенная конструкция сборного рабочего элемента позволяет не только улучшить обрабатываемость изделия резания, но и уменьшить расход остродефицитного твердого сплава по сравнению с твердосплавным ДЭ аналогичных размеров на 6 кг. Полученные результаты можно использовать в инженерных расчетах при проектировании сборного инструмента для дискретного деформирования, а также для оценки прочности сборных инструментов, например, фрез, зенкеров, разверток при уточнении внешних нагрузок We developed an algorithm and assessed the strength of prefabricated carbide elements with solid and discrete working surfaces. We obtained dependencies that make it possible to establish a relationship between the design parameters of prefabricated deforming tools and their strength. We performed strength calculations of the deforming tool for machining holes of significant diameter with solid and discrete working surfaces. We obtained the distributions of equivalent stresses in the elements of the tool and contact stresses over the contact surface of the hard-alloy insert - body by numerical modeling, by the finite element method, which made it possible to analyze the strength of the tool under load. We determined the design parameters of the tool and here we give algorithms for the sequence of calculation of prefabricated deforming elements (DE). We developed an algorithm for the sequence of calculating the prefabricated DE for discrete broaching. The proposed design of the prefabricated working element allows not only to improve the machinability of the cutting product but also to reduce the consumption of an acutely deficient hard alloy in comparison with a hard alloy DE of similar dimensions by 6 kg. The results obtained can be used in engineering calculations when designing a prefabricated tool for discrete deformation, as well as for assessing the strength of prefabricated tools, for example, cutters, countersinks, reamers when specifying external loads


Author(s):  
Jun-ichiro SATO ◽  
Hiromasa INABA ◽  
Kazutaka UCHIYAMA ◽  
Takaaki UDA ◽  
Toshinori ISHIKAWA ◽  
...  

Author(s):  
Chun-Hung Pao ◽  
Takaaki Uda ◽  
Yu-Hsiang Lin ◽  
Jia-Lin Julie Chen

Golden Beach in Taiwan is a sandy beach attracting many beachgoers because of its wide sandy beach and beautiful sunset. In recent years, this beach has been eroded. The cause of the beach erosion is considered to be due to the wave-sheltering effect of the Anping Harbor breakwaters constructed 4 km north of the beach. Now the restoration of sandy beach is underway by the construction of groins as well as beach nourishment using sand procured from the downcoast deposition area. This study aims to investigate the cause of the beach erosion of this beach to work out the effective measures against beach erosion.


2018 ◽  
Author(s):  
Honghai Li ◽  
Tahirih Lackey ◽  
Tanya Beck ◽  
Hans Moritz ◽  
Katharine Groth ◽  
...  

2012 ◽  
Vol 1 (33) ◽  
pp. 93
Author(s):  
Antony Thorpe ◽  
Jon Miles ◽  
Gerd Masselink ◽  
Paul Russell ◽  
Tim Scott ◽  
...  

A Sand Ripple Profiler (SRP) was deployed in a rip channel on a dissipative sandy beach to measure bedform height (∆), length (λ) and migration rate (Mr¬) throughout a macro-tidal cycle with an offshore significant wave height of 0.7 m and peak period of 10 s. At lower tidal elevations in the strong offshore flow of the rip current (maximum = 0.4 m/s) bedforms (∆ = 0.15 m, λ = 3 m) were found to migrate offshore (Mr = 0.21 m/hr). Outside of active rip current conditions (water depth (h) = >~2.5 m) bedforms were found to be of smaller scale (∆ = 0.09 – 0.12 m, λ = 1 – 1.2 m) migrating onshore at a rate of 0.35 m/hr at mid tide (h = 3.3 m) and 0.03 m/hr at high tide (h = 6.3 m). Onshore migration rates were found to increase with increased wave skewness and velocity variance.


2008 ◽  
Vol 8 (2) ◽  
pp. 7391-7453 ◽  
Author(s):  
M. Piot ◽  
R. von Glasow

Abstract. Near-total depletions of ozone have been observed in the Arctic spring since the mid 1980s. The autocatalytic cycles involving reactive halogens are now recognized to be of main importance for Ozone Depletion Events (ODEs) in the Polar Boundary Layer (PBL). We present sensitivity studies using the model MISTRA in the box-model mode on the influence of chemical species on these ozone depletion processes. In order to test the sensitivity of the chemistry under polar conditions, we compared base runs undergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs including a modification of the chemical conditions. The role of HCHO, H2O2, DMS, Cl2, C2H4, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speciation from Br/BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from HOBr/HBr to Br/BrO. Cases with elevated mixing ratios of HONO, NO2, and RONO2 induced a shift to BrNO2/BrONO2. The shifts from Br/BrO to HOBr/HBr accelerated the aerosol debromination, but also increased the total amount of deposited bromine at the surface (mainly via increased deposition of HOBr). These shifts to HOBr/HBr also hindered the BrO self-reaction. In these cases, the ozone depletion was slowed down, where increases in H2O2 and HONO had the greatest effect. The tests with increased mixing ratios of C2H4 highlighted the decrease in HOx which reduced the production of HOBr from bromine radicals. In addition, the direct reaction of C2H4 with bromine atoms led to less available reactive bromine. The aerosol debromination was therefore strongly reduced. Ozone levels were highly affected by the chemistry of C2H4. Cl2-induced ozone depletions were found unrealistic compared to field measurements due to the rapid production of CH3O2, HOx, and ROOH which rapidly convert reactive chlorine to HCl in a "chlorine counter-cycle". This counter-cycle efficiently reduces the concentration of reactive halogens in the boundary layer. Depending on the relative bromine and chlorine mixing ratios, the production of CH3O2, HOx, and ROOH from the counter-cycle can significantly affect the bromine chemistry. Therefore, the presence of both bromine and chlorine in the air may unexpectedly lead to a slow down in ozone destruction. For all NOy species studied (HONO, NO2, RONO2) the chemistry is characterized by an increased bromine deposition on snow reducing the amount of reactive bromine in the air. Ozone is less depleted under conditions of high mixing ratios of NOx. The production of HNO3 led to the acid displacement of HCl, and the release of chlorine out of salt aerosols (Cl2 or BrCl) increased.


Sign in / Sign up

Export Citation Format

Share Document