Equations for the entire soil-water characteristic curve of a volume change soil

2008 ◽  
Vol 45 (4) ◽  
pp. 443-453 ◽  
Author(s):  
Hung Q. Pham ◽  
Delwyn G. Fredlund

Numerous curve-fitting equations have been proposed for soil-water characteristic curves. While these equations have been of considerable value in geotechnical and geoenvironmental engineering, the equations are not able to adequately fit gravimetric soil-water characteristic curve data over the entire range of soil suction for a soil that changes volume when suction is changed. Two new equations for the soil-water characteristic curve are presented in this paper. One equation has curve-fitting parameters that bear a meaningful relationship to conventional physical soil properties (e.g., air-entry value and residual soil suction), but the equation is somewhat complex. The equation is particularly useful for sensitivity type studies when undertaking computer modeling. The other equation is relatively simple to use and is developed as a conventional curve-fitting equation. The two equations are used to best-fit several soil datasets. Both equations perform well and can be used in research and engineering practice to define the gravimetric water content versus soil suction relationship for a soil exhibiting volume change.

2007 ◽  
Vol 44 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Measurement of the soil-water characteristic curve (SWCC) in the laboratory is commonly conducted under zero confining pressure. However, in the field, the soil is under a confining stress. Therefore, it is important to study the effects of the confining stress on SWCC. In addition, the consolidation curve is normally generated under saturated conditions. However, the soil above the water table is usually unsaturated. Hence, it is also necessary to investigate the effects of matric suction on the characteristics of the consolidation curves. This paper presents the SWCCs under different net confining stresses and the isotropic consolidation curves under different matric suctions that describe the volume change characteristics of unsaturated soils with respect to stress state variables, net normal stress, and matric suction. A series of SWCCs was determined for statically compacted silt specimens in a triaxial cell apparatus under different net confining stresses. Isotropic consolidation tests under different matric suctions were also carried out. The results of the SWCC tests show that the air-entry value increased with increasing net confining stress. The yield points (i.e., yield suction, s0) obtained from the SWCC tests also increased with increasing net confining stress. The results of isotropic consolidation tests indicate the strong influence of matric suction on compressibility and stiffness of the compacted silt specimens.Key words: soil-water characteristic curve, isotropic consolidation, pore-water pressure, volume change, NTU mini suction probe, matric suction.


2011 ◽  
Vol 312-315 ◽  
pp. 1172-1177 ◽  
Author(s):  
A. Topa Gomes ◽  
A. Viana Da Fonseca ◽  
A. Silva Cardoso

The seepage analysis in geotechnical problems, namely in excavations, was typically performed assuming saturated conditions in the ground. It is now know that the flow in the non saturated part of the ground assumes also relevant importance and hence it is vital to characterize its behaviour. The Soil Water Characteristic Curve (SWCC) of the soil is probably the most important parameter in defining this behaviour and particularly for estimating the permeability of the soil. This paper presents the definition of the SWCC for a granite residual soil using pressure plates and the filter paper method. Based on experimental data some equations are adjusted and the results obtained are discussed. At the end of the paper some predictions of the non saturated permeability of the ground are also performed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Siti Jahara Matlan ◽  
Muhammad Mukhlisin ◽  
Mohd Raihan Taha

Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model’s performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil.


2019 ◽  
Vol 56 (8) ◽  
pp. 1059-1069 ◽  
Author(s):  
Delwyn G. Fredlund

Routine geotechnical engineering practice has witnessed a significant increase in the usage of unsaturated soil mechanics principles. Laboratory measurement of the soil-water characteristic curve (SWCC) for a soil has been labelled as a primary reason for the improved understanding of unsaturated soil behaviour. Laboratory measurement of the “shrinkage curve” has yielded further insight into the estimation of unsaturated soil property functions (USPFs). The USPFs provide the necessary information for the simultaneous numerical modeling of the saturated and unsaturated portions of the soil profile. This paper presents a state-of-practice summary of the engineering protocols that have emerged amidst the numerous research studies reported over the past couple of decades. It also introduces issues related to hysteresis associated with the SWCC and suggests a pathway forward.


Author(s):  
M F Yusof ◽  
A S Setapa ◽  
S A A Tajudin ◽  
A Madun ◽  
M H Z Abidin ◽  
...  

1996 ◽  
Vol 33 (3) ◽  
pp. 379-392 ◽  
Author(s):  
S K Vanapalli ◽  
D G Fredlund ◽  
D E Pufahl ◽  
A W Clifton

Experimental studies on unsaturated soils are generally costly, time-consuming, and difficult to conduct. Shear strength data from the research literature suggests that there is a nonlinear increase in strength as the soil desaturates as a result of an increase in matric suction. Since the shear strength of an unsaturated soil is strongly related to the amount of water in the voids of the soil, and therefore to matric suction, it is postulated that the shear strength of an unsaturated soil should also bear a relationship to the soil-water characteristic curve. This paper describes the relationship between the soil-water characteristic curve and the shear strength of an unsaturated soil with respect to matric suction. Am empirical, analytical model is developed to predict the shear strength in terms of soil suction. The formulation makes use of the soil-water characteristic curve and the saturated shear strength parameters. The results of the model developed for predicting the shear strength are compared with experimental results for a glacial till. The shear strength of statically compacted glacial till specimens was measured using a modified direct shear apparatus. Specimens were prepared at three different water contents and densities (i.e., corresponding to dry of optimum, and wet of optimum conditions). Various net normal stresses and matric suctions were applied to the specimens. There is a good correlation between the predicted and measured values of shear strength for the unsaturated soil. Key words: soil-water characteristic curve, shear strength, unsaturated soil, soil suction, matric suction.


2005 ◽  
Vol 42 (2) ◽  
pp. 624-631 ◽  
Author(s):  
In-Mo Lee ◽  
Sang-Gyu Sung ◽  
Gye-Chun Cho

The effect of stress state on the unsaturated shear strength of a Korean residual soil was studied using modified triaxial tests. Experimental results show that the soil-water characteristic curve and shear strength of this soil are significantly affected by the change of net normal stresses. This effect should be taken into consideration in the model to precisely describe the shear strength envelope of unsaturated soils. Thus, a new model for estimation of unsaturated shear strength is proposed using the soil-water characteristic curve and the saturated shear strength parameters.Key words: prediction model, soil-water characteristic curve, matric suction, triaxial test, unsaturated shear strength.


Sign in / Sign up

Export Citation Format

Share Document