A practical hysteresis model for the soil–water characteristic curve for soils with negligible volume change

Géotechnique ◽  
2003 ◽  
Vol 53 (2) ◽  
pp. 293-298 ◽  
Author(s):  
H. Q. Pham ◽  
D. G. Fredlund ◽  
S. L. Barbour
2007 ◽  
Vol 44 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Measurement of the soil-water characteristic curve (SWCC) in the laboratory is commonly conducted under zero confining pressure. However, in the field, the soil is under a confining stress. Therefore, it is important to study the effects of the confining stress on SWCC. In addition, the consolidation curve is normally generated under saturated conditions. However, the soil above the water table is usually unsaturated. Hence, it is also necessary to investigate the effects of matric suction on the characteristics of the consolidation curves. This paper presents the SWCCs under different net confining stresses and the isotropic consolidation curves under different matric suctions that describe the volume change characteristics of unsaturated soils with respect to stress state variables, net normal stress, and matric suction. A series of SWCCs was determined for statically compacted silt specimens in a triaxial cell apparatus under different net confining stresses. Isotropic consolidation tests under different matric suctions were also carried out. The results of the SWCC tests show that the air-entry value increased with increasing net confining stress. The yield points (i.e., yield suction, s0) obtained from the SWCC tests also increased with increasing net confining stress. The results of isotropic consolidation tests indicate the strong influence of matric suction on compressibility and stiffness of the compacted silt specimens.Key words: soil-water characteristic curve, isotropic consolidation, pore-water pressure, volume change, NTU mini suction probe, matric suction.


2008 ◽  
Vol 45 (4) ◽  
pp. 443-453 ◽  
Author(s):  
Hung Q. Pham ◽  
Delwyn G. Fredlund

Numerous curve-fitting equations have been proposed for soil-water characteristic curves. While these equations have been of considerable value in geotechnical and geoenvironmental engineering, the equations are not able to adequately fit gravimetric soil-water characteristic curve data over the entire range of soil suction for a soil that changes volume when suction is changed. Two new equations for the soil-water characteristic curve are presented in this paper. One equation has curve-fitting parameters that bear a meaningful relationship to conventional physical soil properties (e.g., air-entry value and residual soil suction), but the equation is somewhat complex. The equation is particularly useful for sensitivity type studies when undertaking computer modeling. The other equation is relatively simple to use and is developed as a conventional curve-fitting equation. The two equations are used to best-fit several soil datasets. Both equations perform well and can be used in research and engineering practice to define the gravimetric water content versus soil suction relationship for a soil exhibiting volume change.


2010 ◽  
Vol 12 (3) ◽  
pp. 336-341
Author(s):  
Fei CAI ◽  
Xiaohou SHAO ◽  
Zhenyu WANG ◽  
Mingyong HUANG ◽  
Yaming ZHAI ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 795-799
Author(s):  
Gai Qing Dai ◽  
Dong Fang Tian ◽  
Yao Ruan ◽  
Lang Tian ◽  
You Le Wang

A new soil water characteristic curve (SWCC) experiment contemplating urea concentration is presented in the paper. We focus on the impact of the SWCC considering urea concentration test method for materials selection and introduction, experimental results, and finally, we have conducted some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


2011 ◽  
Vol 261-263 ◽  
pp. 1039-1043
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Jia Xing Yu

A soil water characteristic curve (SWCC) can describe the relationship between unsaturated soil matric suction and water content. By analyzing and researching the test data of the soil water characteristic curve researchers can initially establish the SWCC equation and apply this equation to the actual engineering analysis. In another words, this article is based on the fluid-solid coupling theory of unsaturated soil used to analyze and study the problem of land subsidence caused by tunnel construction. Numerical calculations show that the coupling results agree well with the measured curve works.


1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


Sign in / Sign up

Export Citation Format

Share Document