Bearing capacity of soils for crawler cranes

2008 ◽  
Vol 45 (9) ◽  
pp. 1282-1302 ◽  
Author(s):  
Xiteng Liu ◽  
Dave H. Chan ◽  
Brian Gerbrandt

Few studies have been carried out on the bearing capacity of soils for crawler cranes. Directly applying the bearing capacity equations used for shallow foundations to cranes often leads to conservative design. The total settlement is of less concern for cranes than for buildings, and cranes can normally tolerate larger differential settlements. Computer simulation and field studies have been carried out to study the allowable bearing capacity of soils for cranes. Equations modified from the traditional method to calculate the bearing capacity for shallow foundations have been proposed. In general, it was found that the bearing capacity for crawler cranes could be increased by as much as 50% from that for foundations. This depends on the soil type, crane, and mat configuration. A design procedure in evaluating foundation support for crawler cranes is also proposed.

2021 ◽  
Author(s):  
Hossein MolaAbasi ◽  
Aghileh Khajeh ◽  
REZA JAMSHIDI CHENARI ◽  
Meghdad Payan

Abstract Using a set of cone penetration test (CPT) records,the current paper develops a general framework based on regression analyses to model the load-settlement (q-s) behavior of shallow foundations resting on a variety of soils ranging from silty clays to sands.A three-parameter hyperbolic function is employed to rigorously examine the obtainedq-s curves, and to determine the model parameters.Also, the results of someCPT soundings, including the corrected cone tip resistance (qt) and the skin friction (Rf),are adopted to predict the results of plate load tests(PLT). The findingscorroborate the high accuracy of the proposed model, thereasonable performance of the hyperbolic function and the use of the Volterra series to predict the q-s curves.Moreover, the obtained curves from the newly developed model arecompared to those from other methods in the literature which cross-confirms the efficacyof the current model. Asensitivity analysis isalso conductedand the exclusive effects of all the contributing parameters are assessed among which Rfis shown to be the most influential. Ultimately, simple solutionsare adoptedto determine variouskey geotechnical parameters, like the ultimate bearing capacity (qult), the allowable bearing capacity (qa) andthe modulus of subgrade reaction (ks).


1990 ◽  
Vol 27 (4) ◽  
pp. 526-529 ◽  
Author(s):  
C. Cherubini

A closed-form solution for the probabilistic evaluation of shallow foundation bearing capacity according to the model proposed by Terzaghi, as modified by Krizek, is described. A numerical example explains the method of computation. Key words: statistics, probability, ultimate bearing capacity, allowable bearing capacity, shallow foundations, friction angle, numerical methods.


Author(s):  
Balázs Móczár ◽  
János Szendefy

Various simplified design procedures can be found in the literature, intended for the design of shallow foundations of lower importance buildings and pre-dimensioning. In most cases, these design procedures are based on vaguely defined soil types and parameters, and are not compatible with Eurocode. The aim of this paper is to establish a „design procedure by prescriptive measures”, according to the guidelines of Eurocode 7. Within this framework, previous design procedures are reviewed and a new procedure is developed for the simplified calculation of the bearing capacity of shallow foundations, conforming to the principles and rules of Eurocode 7.


2019 ◽  
Vol 114 ◽  
pp. 103138 ◽  
Author(s):  
Changguang Zhang ◽  
Benxian Gao ◽  
Qing Yan ◽  
Junhai Zhao ◽  
Lizhou Wu

Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


Sign in / Sign up

Export Citation Format

Share Document