Post-Peak Behaviour of Sensitive Clays in Undrained Shear

1968 ◽  
Vol 5 (2) ◽  
pp. 59-68 ◽  
Author(s):  
B Ladanyi ◽  
J P Morin ◽  
C Pelchat

The post-peak stress-strain behaviour in undrained shear of three different clays has been investigated by using an indirect method. This method, which is in principle similar to that used by Kallstenius (1963), consists in first compressing a clay specimen to a given post-peak strain between two parallel platens and subsequently determining its current remoulded strength by the laboratory vane method. By a repeated compression procedure, axial strains of up to 200 per cent have been attained. As the three clays tested differed widely in sensitivity, a comparison of their post-peak behaviour made clearly apparent the effect of structural breakdown on the reserve shear strength at large strains.

2021 ◽  
Vol 13 (10) ◽  
pp. 5741
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Xiaoshan Lin ◽  
Muhammad Riaz Ahmad

The addition of macro-polypropylene fibres improves the stress-strain performance of natural aggregate concrete (NAC). However, limited studies focus on the stress-strain performance of macro-polypropylene fibre-reinforced recycled aggregate concrete (RAC). Considering the variability of coarse recycled aggregates (CRA), more studies are needed to investigate the stress-strain performance of macro-polypropylene fibre-reinforced RAC. In this study, a new type of 48 mm long BarChip macro-polypropylene fibre with a continuously embossed surface texture is used to produce BarChip fibre-reinforced NAC (BFNAC) and RAC (BFRAC). The stress-strain performance of BFNAC and BFRAC is studied for varying dosages of BarChip fibres. Results show that the increase in energy dissipation capacity (i.e., area under the curve), peak stress, and peak strain of samples is observed with an increase in fibre dosage, indicating the positive effect of fibre addition on the stress-strain performance of concrete. The strength enhancement due to the addition of fibres is higher for BFRAC samples than BFNAC samples. The reduction in peak stress, ultimate strain, toughness and specific toughness of concrete samples due to the utilisation of CRA also reduces with the addition of fibres. Hence, the negative effect of CRA on the properties of concrete samples can be minimised by adding BarChip macro-polypropylene fibres. The applicability of the stress-strain model previously developed for macro-synthetic and steel fibre-reinforced NAC and RAC to BFNAC and BFRAC is also examined.


2020 ◽  
Vol 10 (10) ◽  
pp. 3351
Author(s):  
Bo Ke ◽  
Jian Zhang ◽  
Hongwei Deng ◽  
Xiangru Yang

The effect of temperature fluctuation on rocks needs to be considered in many civil engineering applications. Up to date the dynamic characteristics of rock under freeze-thaw cycles are still not quite clearly understood. In this study, the dynamic mechanical properties of sandstone under pre-compression stress and freeze-thaw cycles were investigated. At the same number of freeze-thaw cycles, with increasing axial pre-compression stress, the dynamic Young’s modulus and peak stress first increase and then decrease, whereas the dynamic peak strain first decreases and then increases. At the same pre-compression stress, with increasing number of freeze-thaw cycles, the peak stress decreases while the peak strain increases, and the peak strain and peak stress show an inverse correlation before or after the pre-compression stress reaches the densification load of the static stress–strain curve. The peak stress and strain both increase under the static load near the yielding stage threshold of the static stress–strain curve. The failure mode is mainly shear failure, and with increasing axial pre-compression stress, the degree of shear failure increases, the energy absorption rate of the specimen increases first and then decreases. With increasing number of freeze-thaw cycles, the number of fragments increases and the size diminishes, and the energy absorption rates of the sandstone increase.


2020 ◽  
Vol 975 ◽  
pp. 203-207
Author(s):  
Shih Tsung Hsu ◽  
Wen Chi Hu ◽  
Yu Heng Lin ◽  
Zhuo Ling

Constitutive models for soils are usually adopted in numerical method to analyze the behavior of geotechnical structures. This study performs a series of consolidated-undrained triaxial tests to establish the stress-strain curve of clay. A constitutive model that considers continuous strain hardening-softening is proposed based on the results of triaxial tests. Triaxial test results reveal that undrained shear strength linearly increases with an increase in consolidated pressure , the normalized undrained shear strength is about 0.52 not only for this study but also for the other two cases around Taipei Basin. Due to undrained condition, an associated flow rule between plastic strain increment and stress tensor is adopted. As accumulative plastic strain or/and consolidated pressure change, the mobilized undrained shear strength also changes. All parameters needed for the proposed model can be expressed as a function of undrained shear strength Su, The mobilized undrained shear strength for the proposed model during strain hardening-softening can be in term of accumulative plastic strain. This model can calculate the stress-strain curves of clayed soils accurately.


1977 ◽  
Vol 11 (4) ◽  
pp. 297-300 ◽  
Author(s):  
D.J. Lloyd ◽  
B.D. McLaughlan ◽  
H. Sang

1985 ◽  
Vol 22 (3) ◽  
pp. 403-408 ◽  
Author(s):  
R. H. Caswell ◽  
B. Trak

This paper presents the results of an experimental study to determine the stress–strain behaviour of fragmented Queenston Shale from Russell, Ontario and to investigate how its strength properties altered when the material was subjected to repeated slaking cycles. Slaking tests showed that large (cobble-size) blocks of the material degrade rapidly to a particle size of 20 mm upon exposure to water and air. Consolidated drained tests in a large triaxial apparatus under monotonic loading conditions on specimens of fresh and slaked material were performed. They indicate that the shear strength of fragmented Queenston Shale of particle size smaller than 20 mm is not affected by slaking. Key words: Queenston Shale, compaction shale, granular material, rockfill, slaking, shear strength, consolidated drained tests.


1987 ◽  
Vol 24 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. G. Agar ◽  
N. R. Morgenstern ◽  
J. D. Scott

The results of a series of triaxial compression tests on undisturbed samples of Athabasca oil sand at elevated temperatures ranging from 20 to 200 °C are summarized. The material tested had experienced gradual unloading and depressurization as a result of erosion in the Saline Creek valley near Fort McMurray. More deeply buried oil sands are known to contain much higher concentrations of dissolved hydrocarbon gases in the pore fluids. The measured shear strength of Athabasca oil sand did not change significantly as a result of the increased temperatures that were applied. The strength of Athabasca oil sand (at 20–200 °C) was found to be greater than comparable shear strengths reported for dense Ottawa sand (at 20 °C). Although heating to 200 °C had little effect on shear strength, it is recognized that pore pressure generation during undrained heating may cause substantial reduction of the available shearing resistance, particularly in gas-rich oil sands. The experimental data were used to investigate the influence of such factors as stress path dependency, microfabric disturbance, and heating to elevated temperatures on the shear strength and stress–strain behaviour of oil sand. Curve fitting of the test data suggests that the hyperbolic model is a useful empirical technique for stress—deformation analyses in oil sands. Hyperbolic stress—strain parameters derived from the experimental results for Athabasca oil sand are presented. Key words: oil sand, Athabasca oil sand, tar sand, shear strength, stress, strain, deformation, heating, high temperature, elevated temperatures, high pressure, elevated pressure, thermal properties, drained heating, undrained heating, triaxial compression testing.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2215
Author(s):  
Tian-Wen Chen ◽  
Jin Wu ◽  
Guo-Qing Dong

The application of recycled coarse aggregate (RCA) made from waste concrete to replace natural coarse aggregate (NCA) in concrete structures can essentially reduce the excessive consumption of natural resources and environmental pollution. Similar to normal concrete structures, recycled concrete structures would also suffer from the damage of carbonation, which leads to the deterioration of durability and the reduction of service life. This paper presents the experimental results of the cubic compressive strength, the static elastic modulus and the stress–strain relation of recycled coarse aggregate concrete (RAC) after carbonation. The results show that the cubic compressive strength and the static elastic modulus of carbonated RAC gradually increased with the carbonation depth. The uncarbonated and fully carbonated RAC show smaller static elastic modulus than natural aggregate concrete (NAC). As the carbonation depth increased, the peak stress increased, while the peak strain decreased and the descending part of the curves gradually became steeper. As the content of RCA became larger, the peak stress decreased, while the peak strain increased and the descending part of the curves gradually became steeper. An equation for stress–strain curves of RAC after carbonation was proposed, and it was in good agreement with the test results.


Author(s):  
Abdul Samad Abdul Rahman ◽  
N. Sidek ◽  
Juhaizad Ahmad ◽  
N. Hamzah ◽  
M. I. F. Rosli

Soil compaction has been a common practice in the construction of highways, embankments, earth dams and other related structures where the condition of the soil is high in void ratio and therefore having a very low in bearing capacity. Therefore, the soil needs to be compacted in order to minimize the void ratio and in the same time would results in having a very high bearing capacity to sustain load. Nevertheless, only a few researches have been done to investigate the method of compaction using different energy on the behavior of shear strength by consolidated drained and direct shear test. In this research, the effect of different compaction in energy of 25 number of blows compared to 40 number of blows on the stress-strain behaviour of drained triaxial test has been done and findings of the data are to be compared with direct shear test. Results reveal that there is an increase in soil unit weight by using different energy in compaction with an increase of 5% from 1790 kg/m3 to 1880 kg/m3 for 25 and 40 number of blows respectively. However, the stress-strain behaviour of the specimens shows differently when compared between consolidated drained triaxial and direct shear test. The shear strength for direct shear-stress is at higher value compared to drained triaxial test. For drained triaxial test, results reveal that the effective friction angles are increase only about 1% from 37° to 38°. This is due to the soil particles rearranging itself with the different applied pressures thus eliminating the effects of different energy on the shear strength of the specimens. However, for direct shear test, the shear strength increases drastically from 29° to 32°. The increase of the shear strength is more likely influence by the soil particle arrangement due to the impact of the energy of the no of blows to the desired specimen.


Sign in / Sign up

Export Citation Format

Share Document