scholarly journals The influence of snow cover on the ground thermal regime

1982 ◽  
Vol 19 (4) ◽  
pp. 421-432 ◽  
Author(s):  
L. E. Goodrich

This paper presents the results of a numerical study of the effects of snow cover on long-term, periodic, steady-state equilibrium ground temperatures. It is shown that mean annual ground temperatures decrease with depth when the soil thermal conductivity is greater in the frozen than in the unfrozen phase. For permafrost conditions the increase in mean annual ground temperatures due to seasonal snow cover is augmented significantly when soil latent heat is present. In seasonal frost cases the calculated depth of frost penetration is extremely sensitive to details of the snow cover buildup. In permafrost cases calculated mean annual temperatures are extremely sensitive to the assumptions made in treating the snow cover. In either case, because it is difficult to model snow cover accurately, the reliability of ground thermal regime computations is adversely affected. Keywords: ground thermal regime, ground temperatures, soil temperatures, numerical model, finite difference, snow cover.

Finisterra ◽  
2012 ◽  
Vol 44 (87) ◽  
Author(s):  
Javier Santos-González ◽  
Rosa González-Gutiérrez ◽  
Amélia Gómes-Villar ◽  
José Redondo-Vega

Ground temperature data obtained from 2002 to 2007 in sites near relict rock glaciers in the cantabrian mountains, at altitudes between 1500 and 2300 meters is analysed. Snow cover lasted between 3 and 9 months and had a strong influence on the thermal regime. When snow was present, the soil was normally frozen in the first 5 to 10 cm, but daily freeze-thaw cycles were rare. In well developed soils located at sunny faces frost penetration rarely reached more than 10 cm. on the contrary in shady and windy faces with scarce snow cover, frost penetration reached, at least, 40 cm. In persistent snow patches the temperature was stable at 0 ºc, even in relict rock glaciers, where subnival winter air fluxes appear to have been very rare.


2021 ◽  
Author(s):  
Andreas Kellerer-Pirklbauer ◽  
Gerhard Karl Lieb

<p>Ground temperatures in alpine environments are severely influenced by slope orientation (aspect), slope inclination, local topoclimatic conditions, and thermal properties of the rock material. Small differences in one of these factors may substantially impact the ground thermal regime, weathering by freeze-thaw action or the occurrence of permafrost. To improve the understanding of differences, variations, and ranges of ground temperatures at single mountain summits, we studied the ground thermal conditions at a triangle-shaped (plan view), moderately steep pyramidal peak over a two-year period (2018-2020).</p><p>We installed 18 monitoring sites with 23 sensors near the summit of Innerer Knorrkogel (2882m asl), in summer 2018 with one- and multi-channel datalogger (Geoprecision). All three mountain ridges (east-, northwest-, and southwest-facing) and flanks (northeast-, west-, and south-facing) were instrumented with one-channel dataloggers at two different elevations (2840 and 2860m asl) at each ridge/flank to monitor ground surface temperatures. Three bedrock temperature monitoring sites with shallow boreholes (40cm) equipped with three sensors per site at each of the three mountain flanks (2870m asl) were established. Additionally, two ground surface temperature monitoring sites were installed at the summit.</p><p>Results show remarkable differences in mean annual ground temperatures (MAGT) between the 23 different sensors and the two years despite the small spatial extent (0.023 km²) and elevation differences (46m). Intersite variability at the entire mountain pyramid was 3.74°C in 2018/19 (mean MAGT: -0.40°C; minimum: -1.78°C; maximum: 1.96°C;) and 3.27°C in 2019/20 (mean MAGT: 0.08°C; minimum: -1.54°C; maximum: 1,73°C;). Minimum was in both years at the northeast-facing flank, maximum at the south-facing flank. In all but three sites, the second monitoring year was warmer than the first one (mean +0.48°C) related to atmospheric differences and site-specific snow conditions. The comparison of the MAGT-values of the two years (MAGT-2018/19 minus MAGT-2019/20) revealed large thermal inhomogeneities in the mountain summit ranging from +0.65° (2018/19 warmer than 2019/20) to -1.76°C (2018/19 colder than 2019/20) at identical sensors. Temperature ranges at the three different aspects but at equal elevations were 1.7-2.2°C at ridges and 1.8-3.7°C at flanks for single years. The higher temperature range for flank-sites is related to seasonal snow cover effects combined with higher radiation at sun-exposed sites. Although the ground temperature was substantially higher in the second year, the snow cover difference between the two years was variable. Some sites experienced longer snow cover periods in the second year 2019/20 (up to +85 days) whereas at other sites the opposite was observed (up to -85 days). Other frost weathering-related indicators (diurnal freeze-thaw cycles, frost-cracking window) show also large intersite and interannual differences.</p><p>Our study shows that the thermal regime at a triangle-shaped moderately steep pyramidal peak is very heterogeneous between different aspects and landforms (ridge/flank/summit) and between two monitoring years confirming earlier monitoring and modelling results. Due to high intersite and interannual variabilities, temperature-related processes such as frost-weathering can vary largely between neighbouring sites. Our study highlights the need for systematic and long-term ground temperature monitoring in alpine terrain to improve the understanding of small- to medium-scale temperature variabilities.</p>


2009 ◽  
Vol 23 (14) ◽  
pp. 2045-2055 ◽  
Author(s):  
Changchun Xu ◽  
Yaning Chen ◽  
Yimit Hamid ◽  
Tiyip Tashpolat ◽  
Yapeng Chen ◽  
...  

1996 ◽  
Vol 32 (7) ◽  
pp. 2075-2086 ◽  
Author(s):  
T. Zhang ◽  
T. E. Osterkamp ◽  
K. Stamnes

2020 ◽  
Vol 223 ◽  
pp. 03006
Author(s):  
Aknur Zholdasbek ◽  
Azamat Kauazov

The present article is concerned with the applied aspects of applying the results of space monitoring of snow cover, in particular, it is proposed to present the results of the analysis in the form of specialized bulletins. The purpose of this publication is to present the available results of space monitoring of snow cover in Kazakhstan as an element of adaptation to climate change. A three-level system of space monitoring of snow cover is proposed, which includes three technological complexes: operational mapping of snow cover boundaries; monitoring of seasonal snow cover dynamics; analysis of long-term snow cover dynamics. A map of snow melting in Kazakhstan in 2020, the dynamics of long-term changes of snow covered area, as well as methods for analyzing the spatial- temporal distribution of snow cover and formats of special bulletins are presented. It is most appropriate to present the results of space monitoring of snow cover in a complex, maximally generalized form (product). The results of the work can be applied in the scientific, industrial and educational spheres to adapt and increase resistance.


2017 ◽  
Vol 47 (4) ◽  
pp. 287-297 ◽  
Author(s):  
Jaroslav Rožnovský ◽  
Jáchym Brzezina

AbstractSnow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important – increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.


2021 ◽  
Author(s):  
Kathrin Naegeli ◽  
Nils Rietze ◽  
Jörg Franke ◽  
Martin Stengel ◽  
Christoph Neuhaus ◽  
...  

<p>The Hindu Kush Himalaya (HKH), the worlds ‘water tower’, contains the largest volume of snow and ice outside of the polar ice sheets and is the headwater area of Asia’s largest rivers. Due to the complex topography and its great spatial extent the HKH is characterised by variable temperature and precipitation pattern and thus exhibits large heterogeneity in the presence of seasonal snow cover (SSC). Previous studies usually focused on regional studies of snow cover area percentage or the influence of snow melt on the local hydrological system. Here we present a systematic overview of spatio-temporal SSC variability of the entire HKH region on a climate relevant time scale (four decades).</p><p>Our results are based on Advanced Very High Resolution (AVHRR) data, collected onboard the polar orbiting satellites NOAA-7 to -19, providing daily, global imagery at a spatial resolution of 5 km since 1982 up to today. This unique dataset is exceptionally valuable to derive pixel-based SSC information using a Normalised Difference Snow Cover (NDSI) approach including additional thresholds related to topography and land cover, and developed in the frame of ESA CCI+ snow.  Calibrated and geocoded reflectance data and a consistent cloud mask, derived in the ESA CCI cloud project, are used. A temporal gap-filling was applied to mitigate the influence of clouds. Reference snow maps from high-resolution optical satellite data as well as in-situ station data were used to validate the time series.</p><p>The dataset allows analysis of the state and trends of SSC at regional and sub-regional level. We thus investigated spatio-temporal evolution and long-term variability of SSC for the entire HKH as well as for 14 hydrological basins. We find large spatial difference in the amount of SSC depending on the regional elevation and precipitation characteristics. Furthermore, we investigate SSC phenology, which is directly linked to climate change and thus of high relevance for seasonal water storage and mountain streamflow. Our analysis indicates a significant decline in snow cover area percentage (SCA %) during warm and dry summer month and a decreasing tendency from high winter through spring to early summer. At the hydrological basin level, no significant long-term trend was detected, however, both western and central basins indicate a decrease in SCA % and generally the latest years are strongly negative. Moreover, we examine SCA % anomalies at the highest available temporal frequency (daily information) and reveal an overall shortening of the SSC occurrence and a general decrease of SSC extent in the HKH region.</p>


2021 ◽  
Author(s):  
Filip Hrbáček ◽  
Zbyněk Engel ◽  
Michaela Kňažková ◽  
Jana Smolíková

Abstract. This study aims to assess the role of ephemeral snow cover on ground thermal regime and active layer thickness in two ground temperature measurement profiles on the Circumpolar Active Layer Monitoring Network – South (CALM-S) JGM site on James Ross Island, eastern Antarctic Peninsula during the high austral summer 2018. The snowstorm of 13–14 January created a snowpack of recorded depth of up to 38 cm. The snowpack remained on the study site for 12 days in total and covered 46 % of its area six days after the snowfall. It directly affected ground thermal regime in a study profile AWS-JGM while the AWS-CALM profile was snow-free. The thermal insulation effect of snow cover led to a decrease of mean summer ground temperatures on AWS-JGM by ca 0.5–0.7 °C. Summer thawing degree days at a depth of 5 cm decreased by ca 10 % and active layer was ca 5–10 cm thinner when compared to previous snow-free summer seasons. Surveying by ground penetrating radar revealed a general active layer thinning of up to 20 % in those parts of the CALM-S which were covered by snow of > 20 cm depth for at least six days.


2013 ◽  
Vol 37 (4) ◽  
pp. 296-305 ◽  
Author(s):  
Qi-Qian WU ◽  
Fu-Zhong WU ◽  
Wan-Qin YANG ◽  
Zhen-Feng XU ◽  
Wei HE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document