Some difficulties associated with the limit equilibrium method of slices

1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.

2012 ◽  
Vol 166-169 ◽  
pp. 2535-2538
Author(s):  
Ke Wang ◽  
Chang Ming Wang ◽  
Fang Qi ◽  
Cen Cen Niu

The traditional limit equilibrium method in the analysis of slope stability not only exists some subjective empirical hypothesis that can not meet the equilibrium of force and moment, but also ignores the effects of internal stress and strain on the slope stability. Furthermore, in the stability of the slope evaluation, limit equilibrium method relies too much on experience when hypothesizing the slope slip surface. So that it makes deviation on slope analysis and stability evaluation. This paper is based on simplified Bishop method used to establish the model of slope stability analysis. And it used genetic algorithms to solve the minimum safety factor and the most dangerous slip surface of slope. It was the arithmetic which simulates organisms genetic evolutionary process and it avoided the traditional methods falling into the local extreme value point easily and error propagation leading to convergence. The algorithm had advantages of higher accuracy, quick convergence and applicability. It showed that the genetic algorithm is accurate and reliable in the analysis of slope stability.


2021 ◽  
Author(s):  
Tesfay Kiros Mebrahtu ◽  
Thomas Heinze ◽  
Stefan Wohnlich

<p>Landslides and ground failures are among the common geo-environmental hazards in many of the tectonically active hilly and mountainous terrains of Ethiopia, such as in the western margin of the Main Ethiopian Rift in Debre Sina area. Besides the geological preconditioning, bi-modal monsoon and seismic events in the tectonically highly active region are usually suspected triggers. In order to minimize the damage caused by the slope failure events, a detailed investigation of landslide-prone areas using numerical modelling plays a crucial role. The aim of this study is to assess the stability of slopes, to understand the relevant failure mechanisms, and to evaluate and compare safety factors calculated by the different available numerical methods. The stability was assessed for slopes of complex geometry and heterogeneous material using the limit equilibrium method and the shear strength reduction method based on finite elements. Furthermore, numerical analysis was done under static and pseudo-static loading using the horizontal seismic coefficient to model their stability during a seismic event. The slope stability analysis indicates that the studied slopes are unstable, and any small scale disturbance will further reduce the factor of safety and probably causing failure. The critical strength reduction factors from the finite element method are significantly lower than the factor of safety from the limit equilibrium method in all studied scenarios, such as Bishop, Janbu Simplified, Spencer and Morgenstern-Price. The difference is especially evident for heterogeneous slopes with joints, which often are initiation points for the failure planes. The simulations show that slope stability of landslide prone hills in the study area strongly depends on the saturation conditions and the seismic load. The studied slopes are initially close to failure and increased pore-pressure or seismic load are very likely triggers.</p>


2020 ◽  
Author(s):  
Azemeraw Wubalem

Abstract Goncha Siso Eneses area is located in northwestern Ethiopia where landslide incidence is active. The landslide incidence in the area resulted in the devastation of 233.1 hectares of cultivated and non-cultivated land, death of eight people, demolition of five houses, displaced 90 households, and 45 households are under risk. The slope failure in this area also caused tilting of the power line, tilting of two houses, cracking of three-houses floor, failed of bridge and blocking of streams as well as springs. The purpose of this research is to evaluate the cause, failure mechanism, landslide distribution, geotechnical condition of the site, slope stability analysis, and factor of safety determination. Soil sampling, laboratory test, terrain characteristics, groundwater-surface manifestation characterization, groundwater depth determination, slope stability analysis, and factor of safety calculation were the most important activities employed in this research work. Using disturbed and undisturbed soil samples of the selected slope section, Atterberg limit (liquid limit & plastic limit), natural soil moisture, unit weight, specific gravity, and shear strength parameters (cohesion & internal friction angle) test were carryout as ASTM standard. The most marginal factor of safety of the area is determined based on the general limit equilibrium method that encompasses different methods inside using slope/w in GeoStudio 2018 software package considering various groundwater conditions for all selected slope sections. The factor of safety for all selected slope sections of the various method under different groundwater conditions is less than one. Based on the finding of field observation and laboratory results, landslide types (rock/soil slides, rock/earth fall, debris/earth flow, & soil creeping) and landslide factors of the study area (slope angle, slope shape, slope modification, land use, groundwater, soil type, and rainfall) are determined. This research finds out that the soil has a great contribution to slope failure in the study area, besides the soil moisture and improper land use practice.


2005 ◽  
Vol 42 (1) ◽  
pp. 272-278 ◽  
Author(s):  
D Y Zhu ◽  
C F Lee ◽  
Q H Qian ◽  
G R Chen

A concise algorithm is proposed in this paper for the calculation of the factor of safety of a slope using the Morgenstern–Price method. Based on force and moment equilibrium considerations, two expressions are derived for the factor of safety Fs and the scaling factor λ, respectively, both in relatively simple forms. With this algorithm and assumed initial values of Fs and λ, the solutions for Fs and λ are found to converge within a few iterations. Compared to other procedures, the present algorithm possesses the advantages of simplicity and high efficiency in application. It is rather straightforward to implement this algorithm into a computer program.Key words: slope, stability, factor of safety, limit equilibrium method.


2012 ◽  
Vol 446-449 ◽  
pp. 1524-1530
Author(s):  
Ting Ai ◽  
Ru Zhang ◽  
Li Ren ◽  
Wen Xi Fu

In order to implement the non-linear Hoek-Brown (HB) shear strength reduction (SSR) on commercially available softwares, this paper derives the relationship between the Drucker-prager (DP) criterion and HB criterion under the condition of plane strain. The equivalent DP parameters can be approximately estimated after serious transformations of parameters between the HB and Mohr-Coulomb (MC) yield functions. To assess the effect of dilation on the stability of slope, the non-associated flow rule, which cannot be contained in the existing limit equilibrium methods, is selected in our analysis, and the SSR-based results of a simple slope indicate that: If the angle of dilatancy ψ is taken to be zero, the factor of safety calculated by the SSR method is very close to that by the limit equilibrium method; if ψ is greater than zero, the factor of safety calculated by the SSR method is greater than that by the limit equilibrium method, and the effect of dilation on the stability of slope can be approximately described by a liner function.


2020 ◽  
Author(s):  
Azemeraw Wubalem Azeze

Abstract The study area is located in northwestern Ethiopia where landslide incidence is active. The landslide incidence in the area resulted in the devastation of 233.1 hectares cultivated and non-cultivated land, death of eight people, demolition of five houses, displaced 90 households, and 45 households are under risk. The slope failure in this area also caused tilting of the power line, tilting of two houses, cracking of three-houses floor, failed of bridge and blocking of streams as well as springs. The purpose of this research is to evaluate the cause, failure mechanism, landslide distribution, geotechnical condition of the site, slope stability analysis and factor of safety determination. Soil sampling, laboratory test, terrain characteristics, groundwater-surface manifestation characterization, groundwater depth determination, slope stability analysis and factor of safety calculation were the most important activities employed in this research work. Using disturbed and undisturbed soil samples of the selected slope section, Atterberg limit (liquid limit & plastic limit), natural soil moisture, unit weight, specific gravity, and shear strength parameters (cohesion & internal friction angle) test were carryout as ASTM standard. The most marginal factor of safety of the area is determined based on the general limit equilibrium method that encompasses different methods inside using slope/w in GeoStudio 2018 software package considering various groundwater conditions for all selected slope sections. The factor of safety for all selected slope sections of the various method under different groundwater conditions is less than one. Based on the finding of field observation and laboratory results, landslide types (rock/soil slides, rock/earth fall, debris/earth flow, & soil creeping) and landslide factors of the study area (slope angle, slope shape, slope modification, land use, groundwater, soil type, and rainfall) are determined. This research finds out that the soil has a great contribution to slope failure in the study area, besides the soil moisture and improper land use practice.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2013 ◽  
Vol 275-277 ◽  
pp. 1423-1426
Author(s):  
Lin Kuang ◽  
Ai Zhong Lv ◽  
Yu Zhou

Based on finite element analysis software ANSYS, slope stability analysis is carried out by Elastic limiting equilibrium method proposed in this paper. A series of sliding surface of the slope can be assumed firstly, and then stress field along the sliding surface is analyzed as the slope is in elastic state. The normal and tangential stresses along each sliding surface can be obtained, respectively. Then the safety factor for each slip surface can be calculated, the slip surface which the safety factor is smallest is the most dangerous sliding surface. This method is different from the previous limit equilibrium method. For the previous limit equilibrium method, the normal and tangential stresses along the sliding surface are calculated based on many assumptions. While, the limit equilibrium method proposed in this paper has fewer assumptions and clear physical meaning.


Sign in / Sign up

Export Citation Format

Share Document