Experimental study on swelling characteristics of compacted bentonite

1994 ◽  
Vol 31 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonites are attracting greater attention as back-filling (buffer) materials for repositories of high-level nuclear waste. However, since there are few studies about the swelling characteristics of compacted bentonites, it is first necessary to clarify the fundamental swelling characteristics in detail. For this purpose, various laboratory tests on the swelling deformation and swelling pressure of compacted bentonites were performed and the results analyzed. The following conclusions were drawn from the study. (i) The curve of swelling deformation versus time is strongly dependent on the initial dry density, vertical pressure, and initial water content. The maximum swelling deformation, however, is almost independent of initial water content, and the maximum swelling deformation increases in proportion to the initial dry density, (ii) The maximum swelling pressure increases exponentially with increasing initial dry density, whereas the maximum swelling pressure is almost independent of initial water content. (iii) The swelling mechanism of compacted bentonite was considered on the basis of the swelling behavior of swelling clay particles such as montmorillonite. Furthermore, a model of the swelling characteristics and a new parameter (swelling volumetric strain of montmorillonite), which were able to evaluate the swelling characteristics of compacted bentonite, were proposed. Key words : bentonite, laboratory test, nuclear waste disposal, swelling deformation, swelling pressure.

2021 ◽  
Vol 3 (2) ◽  
pp. 44-51
Author(s):  
Talal Masoud ◽  
Abdulrazzaq Jawish Alkherret

  In this study for factors effecting the swelling pressure of jerash expansive soils were investigated in this study, effect of initial dry density and effect of initial water content on the jerash expansive soil were investigated.It show that as the initial dry density decrease from 1.85 gm/cm3  to1.25 gm/cm3 , the swelling pressure also decrease are from 3.1  to 0.25gm/cm2   also it show that as the initial water content increase from 0%to 15% , the swelling pressure of jerash expansive soil decrease from 2.65 gm/cm2  to 1.35 gm/cm2  .  


2003 ◽  
Vol 40 (2) ◽  
pp. 460-475 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonite and sand–bentonite mixtures are attracting greater attention as buffer material for repositories of high-level nuclear waste. This buffer material is expected to fill up the space between the canisters containing the waste and the surrounding ground by swelling. To produce the specifications, such as dry density, sand–bentonite mass ratio, and dimensions, of the buffer material, the swelling characteristics of compacted bentonite and sand–bentonite mixtures must be evaluated quantitatively. New equations for evaluating the swelling behavior of compacted bentonite and sand–bentonite mixtures are presented that can accommodate the influences of the sand–bentonite mass ratio and the exchangeable-cation composition of bentonite. The new method for predicting swelling characteristics is presented by combining the new equations with the theoretical equations of the Gouy–Chapman diffuse double layer theory and of the van der Waals force, which can evaluate the repulsive and attractive forces of montmorillonite mineral (i.e., the swelling clay mineral in bentonite). Furthermore, the applicability of the new prediction method has been confirmed by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites and sand–bentonite mixtures.Key words: bentonite, diffuse double layer theory, van der Waals force, nuclear waste disposal, swelling deformation, swelling pressure.


2011 ◽  
Vol 250-253 ◽  
pp. 1761-1764
Author(s):  
Wei Fu ◽  
Wan Ping Wu ◽  
Sha Wu ◽  
Bin He ◽  
Yan Bin Ruan

Swelling tests of remolded expansive soil with water immersing are carried out by use of the simple consolidometers. The swelling characteristics of the expansive soil under the different initial conditions are studied. The Dose Response model is used to fit the rules of swelling time interval for expansive soil with water immersing. The quantitative relationship among the swelling and initial overburden pressure, initial water content and initial dry density is attained by use of the three dimensional regression analyses. The important index obtained could be provided to the engineering design, construction and stability evaluation of expansive soil slopes.


2020 ◽  
Vol 205 ◽  
pp. 10005
Author(s):  
Tomonori Sakita ◽  
Hideo Komine ◽  
Atsuo Yamada ◽  
Hailong Wang ◽  
Shigeru Goto

Sand-bentonite mixtures with bentonite content of 10-30% had been planned to handle low-level radioactive waste in Japan, because of its low permeability. Hydraulic conductivity of sand–bentonite mixture depends on the bentonite type, bentonite content, initial water content, and other factors. Given this background, falling head permeability tests were conducted on sand–bentonite mixture by varying the compaction energy for specimen preparation, initial water content (10–20%), and bentonite content (15– 30%). For these tests, the hydraulic gradient of 25-500 was set. Consequently, the hydraulic conductivities were 10-8 – 10-13 m/s for all tested conditions. Correlation between the hydraulic conductivity and the effective montmorillonite dry density (montmorillonite mass divided by the sum of montmorillonite, air, water volume), which is often used to correlate the hydraulic conductivity of bentonite, was found. Correlation was also found between the hydraulic conductivity and a new index designated as the effective montmorillonite wet density (sum of montmorillonite and water mass / sum of montmorillonite, air, water volume). Effective montmorillonite wet density reveals differences in the specimen structural distribution through consideration of the initial water content.


2013 ◽  
Vol 477-478 ◽  
pp. 472-475
Author(s):  
Ling Cao ◽  
Xin Zhe Li

Based on the unsaturated soil ponding water infiltration test in laboratory, the influences of cohesive particles content, dry density and initial water content on infiltration rate are analyzed. Soil infiltration rate decreased with the increase of cohesive particles content and dry density; with the decrease of initial water content at low dry density, and with the increase of initial water content at high dry density.


Clay Minerals ◽  
2013 ◽  
Vol 48 (1) ◽  
pp. 105-115 ◽  
Author(s):  
S. Kaufhold ◽  
M. Klinkenberg ◽  
R. Dohrmann

AbstractBentonites are in worldwide use as candidate materials for the encapsulation of high-level radioactive waste (HLRW). To effectively seal waste canisters, bentonite is compacted to bentonite blocks which can be used to build a wall around the canisters. Compaction significantly improves the swelling pressure, which is currently considered as one of the most important parameters for assessing barrier performance. Most of the studies on compressibility of bentonites consider a few different materials only, which does not lead to a general understanding of bentonite performance. In order to identify the actual compressibility differences of different bentonites, a sizeable set of well characterized materials was investigated with respect to the dry densities after compaction.Different results were obtained for bentonites that had been dried and bentonites that were equilibrated at 70% r.h. (relative humidity) prior to compaction. The dry density of dried bentonites depends on total porosity and particle density. However, the dry density of microporous bentonites depends on the microporosity rather than total porosity because microporosity is not reduced upon compaction. On the other hand, for the samples previously equilibrated at 70% r.h., the water content is most important. However, the water content, i.e. the water uptake capacity at 70% r.h., in turn largely depends on the CEC but also on microporosity. Therefore, under a given load, the 36 bentonites studied showed a significant range of resulting dry densities, depending on water content, CEC and porosity.In conclusion, for a given bentonite, the dry density after compaction explains some geotechnical parameters such as the swelling pressure. However, for reasons explained in the present study, the dry density cannot be generally used to predict these parameters.


2017 ◽  
Vol 23 (2) ◽  
pp. 124
Author(s):  
Wilis Diana ◽  
Edi Hartono ◽  
Anita Widianti

Expansive soils experience volumetric changes due to water content changes. These volumetric changes cause swell and shrink movement in soils, which in turn will inflict severe damage to structures built above them. A Proper understanding of how the expansive soil behaves during the wetting/drying process is essential for assessing the mitigation action of expansive soil hazard and design suitable foundation. The structures that build above expansive soil bed are susceptible to heave and to withstand swell pressure, thus the swell pressure must be considered in the design. This study focuses on swelling properties of two expansive clay from Ngawi, East Java and Wates, Yogyakarta. Laboratory test on disturbed samples is used to identified and to measured swelling properties. A series of swelling test was performed under constant soil dry density. The influence of initial water content and surcharge pressure on swelling properties (i.e swell percent and swell pressure) of compacted samples were investigated. The swelling properties test used ASTM standard 4546-03 method B. It was found that the lower initial water content the higher the swell percent, but the swell pressure seems not to be affected by initial water content. At the same initial water content, swell percent decrease with the increase of surcharge pressure, but swell pressure remains unchanged.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Changxi Huang ◽  
Xinghua Wang ◽  
Hao Zhou ◽  
Yan Liang

Expansive soil has been studied for eighty decades because it is prone to cause geotechnical engineering accidents. The results of the moisture content effects on the expansive pressure were not consistent in the literatures. In this paper, swelling deformation and pressure tests were conducted to clarify the effects of the initial water content on the swelling properties. The relation of expansive stress and initial moisture content was accurately described with a Gaussian distribution, unlike in the previously published studies. These results could be explained by the change in the microstructure with diverse moisture contents. In addition, dry density and vertical stress influences on expansive properties were analysed. With an increase in the vertical loading, the soil samples first expanded, and then the samples with a lower dry density collapsed; however, the samples with a higher dry density did not collapse, even under a considerable vertical loading. Furthermore, the relation between stress path and expansive pressure was examined. It was observed that the swelling pressures obtained from the constant volume tests were greater than the results from the swell under load tests. The relationship between the swelling pressure and swelling strain was also analysed.


Sign in / Sign up

Export Citation Format

Share Document