swell pressure
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 26 (4) ◽  
pp. 167-178
Author(s):  
A.N. Mohammed ◽  
A.A. Khalil

Abstract The current study aims to investigate the effects of swell pressure on the bearing capacity of swelling soil. A model and some laboratory tests have been created to investigate the swell pressure effect on the bearing capacity variation of soil swelling due to swelling pressure. The influence of varying water content w/c and dry unit weight (γ d ) on the shear strength and swelling pressure was studied. The soil has been taken from Diwan Residential Compound-Mosul. It is classified as highly swelling soil. The swell pressure of soils at their natural water content reached 385 kN / m2 . Experiment results show that the parameters of shear resistance decreased with the w/c increase at the constant value of (γ d ), increased with the (γd ) increase when the w/c was constant. Results show that the swelling pressure decreased with the w/c increase, while it increased with the (γ d ) increase. Also, the results obtained using was model show that the resistance of bearing capacity of pre-saturated selected soil was 196 kN / m 2, while the bearing capacity was 620kN / m 2 when taking into account in the generation of swelling pressure.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fazal E. Jalal ◽  
Babak Jamhiri ◽  
Ahsan Naseem ◽  
Muhammad Hussain ◽  
Mudassir Iqbal ◽  
...  

This paper evaluates the suitability of sugarcane bagasse ash (SCBA) and waste marble dust (WMD) on the geotechnical properties of Palygorskite-rich expansive clays located in northwest Pakistan. These problematic soils exhibit undesirable characteristics which greatly affect the pavements, boundary walls, slab-on-grade members, and other civil engineering infrastructures. A series of geotechnical tests were performed on soil specimens using prescribed percentages of the aforementioned Ca-based stabilizer materials (CSMs). The investigation includes X-Ray Diffraction (XRD) Analysis, Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) tests, and physicomechanical properties such as moisture-density relationship, Atterberg’s limits, swell pressure, and an ANN-based sensitivity analyses of overall swell pressure development. The outcomes of these experimental investigations showed that the addition of CSMs into the expansive soils increased to 4% SCBA and 10% WMD, the plasticity index reduced by 30% and 49%, the volumetric swell decreased from approximately 49% to 86% and 63%, and the swelling pressure reduction was from 189 kPa to 120 kPa and 160 kPa (about 15% and 36%), respectively. It is interesting to note that replacement with specified CSM accelerated the strength of soil at extended curing periods and the optimum improvement in the strength behavior of the soil was also recorded. Moreover, with addition of the respective CSMs, the compactability and strength characteristics were ameliorated, while plasticity was significantly lowered. Given the amount of SCBA and WMD produced annually, their utilization for the stabilization of problematic soils, even in relatively low concentrations, could potentially have a substantial impact on the sustainable reuse of these waste materials.


2021 ◽  
pp. 97-108
Author(s):  
Darikandeh Farahnaz ◽  
B. V. S. Viswanadham ◽  
K. Kayabali ◽  
A. Qureshi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohini C. Kale ◽  
Bhanwariwal Kapil ◽  
K. Ravi

AbstractThe use of compacted bentonite around the high-level nuclear waste canister (HLW) inside the deep geological repository (DGR) ensures the prevention of entry of active radionuclides in the atmosphere due to its noteworthy large swelling ability. In the eventual repository, the waste canister has a high (100 °C–200 °C) temperature initially, and it reduces over a vast period, which induces a thermal history over the compacted bentonite layer. The cement/concrete layer is constructed as a bulkhead or in the vaults or to support the access of galleries between a buffer and the host rock, and it degrades over the period. The hyperalkaline fluid is created when it percolates through the cement/concrete layer and comes in contact with the compacted bentonite. The contact of hyperalkaline fluid to compacted bentonite induced with thermal history can hamper the swell pressure characteristic of the bentonite. Therefore to determine the combined effect of hyperalkalinity to the thermal history induced compacted bentonite, swell pressure testing has been conducted on two compacted Barmer bentonites (B1 and B2) specimens with an initial dry density of 1.5 Mg/m3, 1.75 Mg/m3, and 2.0 Mg/m3 and saturated with distilled water as well as with hyperalkaline cement water (W/C = 1 und pH = 12.5) and heated to 110 °C and 200 °C. When the specimens were saturated with hyperalkaline cement water, the swell pressure exerted by both bentonites was noticeably reduced compared to specimens saturated with distilled water. Nevertheless, the time taken to full saturation was longer than distilled water for samples saturated with hyperalkaline cement water. Also, the decrease in swell pressure was observed in the samples subjected to thermal history than samples, which were tested without inducing thermal history in both the cases of hyperalkaline cement water and distilled water. The microstructural observations through XRD, FESEM and EDX revealed the clogging of pores due to the presence of non-swelling minerals.


2021 ◽  
Vol 58 (3) ◽  
pp. 367-376
Author(s):  
R.W.I. Brachman ◽  
R.K. Rowe ◽  
A. Baral ◽  
M.S. Hosney ◽  
G. Su ◽  
...  

Swelling characteristics of compacted bentonite when hydrated with a hypersaline pore fluid (332 g/L total dissolved solids; 6.6 mol/L ionic strength) are reported. The pore fluid mimics the multiple constituents and their concentrations found for the Cobourg limestone of the Michigan Basin and is dominated by sodium (25% mole fraction) with some potassium, calcium, and magnesium (10%, 5%, and 4% mole fractions). Measurements of swell pressure for two sodium bentonites when hydrated under conditions of zero volume increase are reported. Swell pressure reached a peak within 10–30 h from the onset of hydration, followed by a continual decrease over 1 year of testing from chemical interaction between the bentonite and pore fluid. After 1 year, the swell pressure of the MX-80 bentonite tested decreased by a factor of nine relative to the peak swell pressure with deionized water when the dry density was 1.6 Mg/m3. Swell pressures increased as dry density increased. However, chemical interactions appear to have more influence on swell pressure than density for the pore fluid examined as a swell pressure of just under 1200 kPa was measured for MX-80 after 1.8 years of hydration when compacted to the highest dry density of 1.8 Mg/m3 examined.


2021 ◽  
Vol 56 (1) ◽  
Author(s):  
Nahla M. Salim

This test program studies the impact of using fly ash on prepared soil by adding different percentages of fly ash (5%, 10% and 15%) by dry soil weight. The expansive soil was prepared in the laboratory by mixing natural soil (Al-Nahrawan clayey soil) with different percentages of bentonite (30%, 50% and 70%). The experimental study focuses on the effects of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity and compaction characteristics of expansive soil. The influence of these admixtures was compared with those of untreated soils. The results show that the plasticity index, the optimum moisture content, swelling percent and swell pressure increase with an increase in the bentonite percentage, and the maximum dry density and specific gravity decrease with increases in the bentonite percentage. The plasticity index, specific gravity, swelling and swelling pressure decrease with increases in the fly ash percentage. The optimum percentage of fly ash was 5%, where the swell and swell pressure decreased by a large amount. The results showed that the addition of fly ash to expansive soils has a positive effect on the soil's geotechnical properties.


2019 ◽  
Vol 92 ◽  
pp. 02011
Author(s):  
Joren Andries ◽  
Daniel Verastegui ◽  
Kim De Beule ◽  
An Baertsoen

The main method for the determination of consolidation parameters in Flanders (Belgium) is still the incremental loading test (IL test). This method can take up to several weeks for some typical Flemish overconsolidated (OC) clays. In theory, the same relationship between settlement and vertical stress can be obtained by performing a constant rate of strain test (CRS test). The main advantages of a CRS test are that the data is continuous and that the test can often be completed considerably faster than an IL test. In this paper, results of both IL and CRS tests on two undisturbed stiff OC clay samples of the same geological formation (Maldegem formation deposited during the Paleogene period) were compared. CRS tests were performed based on ASTM D4186, but constant stress stages were controlled using effective vertical stress instead of total vertical stress as most important adjustment to the standard. In addition, special attention was paid to the development of initial swell pressure and selecting an appropriate rate of strain for this clay with a very high plasticity. Similar values for compressibility and hydraulic conductivity were found using both IL and CRS test results. As the duration of a CRS test on this clay with low hydraulic conductivity can also take up to a few weeks, the time saving aspect of the test was found to be limited for the stiff OC clay tested. The uncertainty in estimating the pre-consolidation pressure and swell pressure was smaller using the continuous CRS test results.


Sign in / Sign up

Export Citation Format

Share Document